PDF (2.2 MB)
Collect
Submit Manuscript
Article | Open Access

Efficient Interface Enabled by Nano-Hydroxyapatite@Porous Carbon for Lithium-Sulfur Batteries

Jia-Yu Wang1Xue-Feng Tong1Qi-Fan Peng1Yue-Peng Guan2()Wei-Kun Wang3An-Bang Wang3Nai-Qiang Liu4()Ya-Qin Huang1()
Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, P.R. China
Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nano Fiber, Beijing Institute of Fashion Technology, Beijing 100029, People’s Republic of China
Research Institute of Chemical Defense, Beijing 100191, P.R. China
School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, P.R. China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

The dissolution and “shuttle effect” of lithium polysulfides (LiPSs) hinder the application of lithium-sulfur (Li-S) batteries. To solve those problems, inspired by natural materials, a nano-hydroxyapatite@porous carbon derived from chicken cartilage (nano-HA@CCPC) was fabricated by employing a simple pre-carbonization and carbonization method, and applied in Li-S batteries. The nano-HA@CCPC would provide a reactive interface that allows efficient LiPSs reduction. With a strong affinity for LiPSs and an excellent electronic conductive path for converting LiPSs, the shuttle effect of LiPSs was confined and the redox kinetics of LiPSs was substantially enhanced. Li-S batteries employing nano-HA@CCPC-modified separators exhibited long cycle life and improved rate capability. At 0.5 C after 325 cycles, a specific capacity of 815 mAh·g-1 and a low capacity fading rate of 0.051% were obtained. The superior properties, sustainable raw materials, and facile preparation process make nano-HA@CCPC a promising additive material for practical Li-S batteries.

Electronic Supplementary Material

Download File(s)
dhx-28-11-2219008_ESM.pdf (1.3 MB)

References

[1]

Goodenough J B, Park K S. The Li-ion rechargeable battery: a perspective[J]. J. Am. Chem. Soc., 2013, 135(4): 1167-1176.

[2]

Manthiram A, Fu Y, Chung S H, Zu C, Su Y S. Rechargeable lithium-sulfur batteries[J]. Chem. Rev., 2014, 114(23): 11751-11787.

[3]

Sun Y M, Liu N A, Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J]. Nat. Energy, 2016, 1(7): 16071.

[4]

Marom R, Amalraj S F, Leifer N, Jacob D, Aurbach D. A review of advanced and practical lithium battery materials[J]. J. Mater. Chem., 2011, 21(27): 9938-9954.

[5]

Girishkumar G, Mccloskey B, Luntz A C, Swanson S, Wilcke W. Lithium-air battery: promise and challenges[J]. J. Phys. Chem. Lett., 2010, 1(14): 2193-2203.

[6]

Rosenman A, Markevich E, Salitra G, Aurbach D, Garsuch A, Chesneau F F. Review on Li-sulfur battery systems: an integral perspective[J]. Adv. Energy Mater., 2015, 5(16): 1500212.

[7]

Peng H J, Huang J Q, Cheng X B, Zhang Q. Review on high-loading and high-energy lithium-sulfur batteries[J]. Adv. Energy Mater., 2017, 7(24): 1700260.

[8]

Choi J W, Kim J K, Cheruvally G, Ahn J H, Ahn H J, Kim K W. Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes[J]. Electrochim. Acta, 2007, 52(5): 2075-2082.

[9]

Yang Y, Zheng G Y, Cui Y. Nanostructured sulfur cathodes[J]. Chem. Soc. Rev., 2013, 44(24): 3018-3032.

[10]

Zhang S S. Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions[J]. J. Power Sources, 2013, 231(2): 153-162.

[11]

Liu M, Li Q, Qin X Y, Liang G M, Han W J, Zhou D, He Y B, Li B H, Kang F Y. Suppressing self-discharge and shuttle effect of lithium-sulfur batteries with V2O5-decorated carbon nanofiber interlayer[J]. Small, 2017, 13(12): 1602539.

[12]

Chung S H, Manthiram A. A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium-sulfur batteries[J]. Adv. Mater., 2014, 26(43): 7352-7357.

[13]

Huang J Q, Zhang Q, Peng H J, Liu X Y, Qian W Z, Wei F. Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries[J]. Energy Environ. Sci., 2013, 7(1): 347-353.

[14]

Liu D, Zhang C, Zhou G, Lv W, Ling G, Zhi L, Yang Q H. Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect[J]. Adv. Sci., 2018, 5(1): 1700270.

[15]

Wu H W, Ying H, Zhang W C, Sun X, Yang Y W, Wang L, Zong M. Lock of sulfur with carbon black and a three-dimensional graphene@carbon nanotubes coated separator for lithium-sulfur batteries[J]. J. Alloys Compd., 2017, 708: 743-750.

[16]

Xiao D J, Lu C X, Chen C M, Yuan S X. CeO2-webbed carbon nanotubes as a highly efficient sulfur host for lithium-sulfur batteries[J]. Energy Storage Mater., 2018, 10: 216-222.

[17]

Peng H J, Huang J Q, Zhao M Q, Zhang Q, Cheng X B, Liu X Y, Qian W Z, Wei F. Carbon: Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries[J]. Adv. Funct. Mater., 2014, 24(19): 2772-2781.

[18]

Rui W, Chen S G, Deng J H, Xun H, Song Y J, Gan R Y, Wan X J, Wei Z D. Hierarchically porous nitrogen-doped carbon as cathode for lithium-sulfur batteries[J]. J. Energy Chem., 2018, 27: 1661-1667.

[19]

Shao H Y, Wang W K, Zhang H, Wang A B, Chen X N, Huang Y Q. Nano-TiO2 decorated carbon coating on the separator to physically and chemically suppress the shuttle effect for lithium-sulfur battery[J]. J. Power Sources, 2018, 378: 537-545.

[20]

Zhao X Y, Wang J Y, Sun X G, Wei K R, Wang W K, Wang A B, Huang Y Q, Guan Y P. Hierarchical porous carbon with Nano-MgO as efficient sulfur species micro-reactors for lithium-sulfur battery[J]. J. Electrochem. Soc., 2021, 168(4): 040506.

[21]

Guan Y P, Liu X J, Akhtar N, Wang A B, Wang W K, Zhang H, Suntivich J, Huang Y Q. Cr2O3 nanoparticle decorated carbon nanofibers derived from solid leather wastes for high performance lithium-sulfur battery separator coating[J]. J. Electrochem. Soc., 2019, 166(8): A1671.

[22]

Kong W B, Yan L J, Luo Y F, Wang D T, Jiang K L, Li Q Q, Fan S S, Wang J P. Li-S batteries: Ultrathin MnO2/graphene oxide/carbon nanotube interlayer as efficient polysulfide-trapping shield for high-performance Li&N dash; S batteries[J]. Adv. Funct. Mater., 2017, 27(18): 1606663.

[23]

Sun Z H, Zhang J Q, Yin L C, Hu G J, Fang R P, Cheng H M, Li F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries[J]. Nat. Commun., 2017, 8: 14627.

[24]

Zeng P, Huang L W, Zhang X L, Han Y M, Chen Y G. Inhibiting polysulfides diffusion of lithium-sulfur batteries using an acetylene black-CoS2 modified separator: mechanism research and performance improvement[J]. Appl. Surf. Sci., 2018, 427: 242-252.

[25]

Xiang K X, Wen X Y, Hu J, Wang S C, Chen H. Rational fabrication of nitrogen and sulfur codoped carbon nanotubes/MoS2 for high-performance lithium-sulfur batteries[J]. ChemSusChem, 2019, 12(15): 3602-3614.

[26]

Zhou T H, Lv W, Li J, Zhou G M, Zhao Y, Fan S X, Liu B L, Li B H, Kang F Y, Yang Q H. Twinborn TiO2-tin heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries[J]. Energy Environ. Sci., 2017, 10(7): 1694-1703.

[27]

Yuan H, Peng H J, Li B Q, Xie J, Kong L, Zhao M, Chen X, Huang J Q, Zhang Q. Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries[J]. Adv. Energy Mater., 2019, 9(1): 1802768.

[28]

Peng Y Y, Wen Z P, Liu C Y, Zeng J, Wang Y H, Zhao J B. Refining interfaces between electrolyte and both electrodes with carbon nanotube paper for high-loading lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2019, 11(7): 6986-6994.

[29]

Liu N Q, Fei A, Wang W K, Shao H Y, Zhang H, Wang A B, Xu Z C, Huang Y Q. Nano-hydroxyapatite as an efficient polysulfide absorbent for high-performance Li-S batteries[J]. Electrochim. Acta, 2016, 215: 162-170.

[30]

Garnero P. The role of collagen organization on the properties of bone[J]. Calcif. Tissue Int., 2015, 97(3): 229-240.

[31]

Peng Q F, Yu F, Wang W K, Wang A B, Wang F, Huang Y Q. Ultralight polyethylenimine/porous carbon modified separator as an effective polysulfide-blocking barrier for lithium-sulfur battery[J]. Electrochim. Acta, 2019, 299: 749-755.

[32]

Peng Q F, Fan Y, Huang B C, Huang Y Q. Carbon-containing bone hydroxyapatite obtained from tuna fish bone with high adsorption performance for congo red[J]. RSC Adv., 2017, 7(43): 26968-26973.

[33]

Do V, Deepika, Kim M S, Kim M S, Lee K R, Cho W I. Carbon nitride phosphorus as an effective lithium polysulfide adsorbent for lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2019, 11(12): 11431-11441.

[34]

Shao H Y, Ai F, Wang W K, Zhang H, Wang A B, Wang F, Huang Y Q. Crab shell-derived nitrogen-doped micro-/mesoporous carbon as an effective separator coating for high energy lithium-sulfur batteries[J]. J. Mater. Chem. A, 2017, 5(37): 19892-19900.

[35]

Zhang B, Qin X, Li G R, Gao X P. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres[J]. Energy Environ. Sci., 2010, 3(10): 1531-1537.

[36]

Yamada H, Nakamura H, Nakahara F, Moriguchi I, Kudo T. Electrochemical study of high electrochemical double layer capacitance of ordered porous carbons with both meso/macropores and micropores[J]. J. Phys. Chem. C, 2007, 111(1): 227-233.

[37]

Peng H J, Zhang Z W, Huang J Q, Zhang G, Xie J, Xu W T, Shi J L, Chen X, Cheng X B, Zhang Q. A cooperative interface for highly efficient lithium-sulfur batteries[J]. Adv. Mater., 2016, 28(43): 9551-9558.

[38]

Zou Q L, Lu Y C. Solvent-dictated lithium sulfur redox reactions: an operando UV-vis spectroscopic study[J]. J. Phys. Chem. Lett., 2016, 7(8): 1518-1525.

[39]

Robinson L, Salma-Ancane K, Stipniece L, Meenan B J, Boyd A R. The deposition of strontium and zinc Co-substituted hydroxyapatite coatings[J]. J Mater. Sci. Mater. Med., 2017, 28(3): 51.

[40]

Baradaran S, Nasiri-Tabrizi B, Shirazi F S, Saber-Samandari S, Shahtalebi S, Basirun W J. Wet chemistry approach to the preparation of tantalum-doped hydroxyapatite: dopant content effects[J]. Ceram. Int., 2018, 44(3): 2768-2781.

[41]

Ma X L, Ning G Q, Qi C L, Xu C G, Gao J S. Phosphorus and nitrogen dual-doped few-layered porous graphene: A high-performance anode material for lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2014, 6(16): 14415-14422.

[42]

Guo M Q, Huang J Q, Kong X Y, Peng H J, Shui H, Qian F Y, Zhu L, Zhu W C, Zhang Q. Hydrothermal synthesis of porous phosphorus-doped carbon nanotubes and their use in the oxygen reduction reaction and lithium-sulfur batteries[J]. New Carbon Mater., 2016, 31(3): 352-362.

[43]

Wu H L, Mou J R, Zhou L, Zheng Q J, Jiang N, Lin D M. Cloud cap-like, hierarchically porous carbon derived from mushroom as an excellent host cathode for high performance lithium-sulfur batteries[J]. Electrochim. Acta, 2016, 212: 1021-1030.

[44]

Do V, Deepika, Kim M S, Kim MS, Lee K R, Cho W I. Carbon nitride phosphorus as an effective lithium polysulfide adsorbent for lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2019, 11(12): 11431-11441.

[45]

Yang J, Chen F, Li C, Bai T, Long B, Zhou X Y. A free-standing sulfur-doped microporous carbon interlayer derived from luffa sponge for high performance lithium-sulfur batteries[J]. J. Mater. Chem. A, 2016, 4(37): 14324-14333.

[46]

Wu X H, Mirolo M, Vaz C A F, Novak P, El Kazzi M. Reactivity and potential profile across the electrochemical LiCoO2-Li3PS4 interface probed by operando X-ray photoelectron spectroscopy[J]. ACS Appl. Mater. Interfaces, 2021, 13(36): 42670-42681.

[47]

Luo C, Zhu Y J, Borodin O, Gao T, Fan X L, Xu Y H, Xu K, Wang C S. Activation of oxygen-stabilized sulfur for Li and Na batteries[J]. Adv. Funct. Mater., 2016, 26(5): 745-752.

[48]

Liu X, Huang J Q, Zhang Q, Mai L Q. Nanostructured metal oxides and sulfides for lithium-sulfur batteries[J]. Adv. Mater., 2017, 29(20): 1601759.

[49]

Mikhaylik Y V, Akridge J R. Polysulfide shuttle study in the Li/S battery system[J]. J. Electrochem. Soc., 2004, 151(11): A1969.

[50]

Cheon S E, Ko K S, Cho J H, Kim S W, Chin E Y, Kim H T. Rechargeable lithium sulfur battery[J]. J. Electrochem. Soc., 2003, 150(6): A796.

[51]

Huang J Q, Zhang Q, Zhang S M, Liu X F, Zhu W, Qian W Z, Wei F. Aligned sulfur-coated carbon nanotubes with a polyethylene glycol barrier at one end for use as a high efficiency sulfur cathode[J]. Carbon, 2013, 58: 99-106.

[52]

Yuan Z, Peng H J, Hou T Z, Huang J Q, Chen C M, Wang D W, Cheng X B, Wei F, Zhang Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts[J]. Nano Lett., 2016, 16(1): 519-527.

Journal of Electrochemistry
Article number: 2219008
Cite this article:
Wang J-Y, Tong X-F, Peng Q-F, et al. Efficient Interface Enabled by Nano-Hydroxyapatite@Porous Carbon for Lithium-Sulfur Batteries. Journal of Electrochemistry, 2022, 28(11): 2219008. https://doi.org/10.13208/j.electrochem.2219008
Metrics & Citations  
Article History
Copyright
Return