Sort:
Open Access Article Issue
Efficient Interface Enabled by Nano-Hydroxyapatite@Porous Carbon for Lithium-Sulfur Batteries
Journal of Electrochemistry 2022, 28(11): 2219008
Published: 28 November 2022
Abstract PDF (2.2 MB) Collect
Downloads:4

The dissolution and “shuttle effect” of lithium polysulfides (LiPSs) hinder the application of lithium-sulfur (Li-S) batteries. To solve those problems, inspired by natural materials, a nano-hydroxyapatite@porous carbon derived from chicken cartilage (nano-HA@CCPC) was fabricated by employing a simple pre-carbonization and carbonization method, and applied in Li-S batteries. The nano-HA@CCPC would provide a reactive interface that allows efficient LiPSs reduction. With a strong affinity for LiPSs and an excellent electronic conductive path for converting LiPSs, the shuttle effect of LiPSs was confined and the redox kinetics of LiPSs was substantially enhanced. Li-S batteries employing nano-HA@CCPC-modified separators exhibited long cycle life and improved rate capability. At 0.5 C after 325 cycles, a specific capacity of 815 mAh·g-1 and a low capacity fading rate of 0.051% were obtained. The superior properties, sustainable raw materials, and facile preparation process make nano-HA@CCPC a promising additive material for practical Li-S batteries.

Open Access Article Issue
Preparation of Highly-Cyclized Sulfurized Polyacrylonitrile for Lithium-Sulfur Batteries
Journal of Electrochemistry 2022, 28(12): 2219010
Published: 14 November 2022
Abstract PDF (11.2 MB) Collect
Downloads:4

Sulfurized polyacrylonitrile (SPAN) is regarded as an attractive cathode candidate of lithium-sulfur (Li-S) batteries for its non-dissolution mechanism and effective alleviation of polysulfides shuttling issue in Li-S batteries, displaying high utilization of cathode active material, outstanding cycle stability and structural stability. However, the relation between cyclization degree and cycle stability of SPAN is still unveiled. In this work, SPAN-C-V composites were synthesized by co-introduction of CuSO4 and zinc n-ethyl-n-phenyldithiocarbamate (ZDB) in the co-heating of sulfur and polyacrylonitrile. The co-introduction of CuSO4 and ZDB reduced the cyclization reaction onset temperature of PAN while increased the C—C/C=C within SPAN-C-V, thus led to an increase in the degree of cyclization of SPAN-C-V, achieving excellent electrochemical performance by simultaneously improving the cyclization degree and increasing the content of sulfur. The SPAN-C-V exhibited an initial reversible capacity of 805 mAh·g-1 and 601 mAh·g-1 after 100 cycles with the capacity retention rate of 93% at 0.2 C (1 C = 600 mAh·g-1). The focus on the cyclization degree of SPAN provides an enlightenment of advanced cathode material.

Research Article Issue
Revealing the Multifunctional Electrocatalysis of Indium-Modulated Phthalocyanine for High-Performance Lithium-Sulfur Batteries
Energy & Environmental Materials 2024, 7(1): e12479
Published: 07 July 2022
Abstract PDF (4.1 MB) Collect
Downloads:0

The sluggish kinetics of complicated multiphase conversions and the severe shuttling effect of lithium polysulfides (LiPSs) significantly hinder the applications of Li-S battery, which is one of the most promising candidates for the next-generation energy storage system. Herein, a bifunctional electrocatalyst, indium phthalocyanine self-assembled with carbon nanotubes (InPc@CNT) composite material, is proposed to promote the conversion kinetics of both reduction and oxidation processes, demonstrating a bidirectional catalytic effect on both nucleation and dissolution of Li2S species. The theoretical calculation shows that the unique electronic configuration of InPc@CNT is conducive to trapping soluble polysulfides in the reduction process, as well as the modulation of electron transfer dynamics also endows the dissolution of Li2S in the oxidation reaction, which will accelerate the effectiveness of catalytic conversion and facilitate sulfur utilization. Moreover, the InPc@CNT modified separator displays lower overpotential for polysulfide transformation, alleviating polarization of electrode during cycling. The integrated spectroscopy analysis, HRTEM, and electrochemical study reveal that the InPc@CNT acts as an efficient multifunctional catalytic center to satisfy the requirements of accelerating charging and discharging processes. Therefore, the Li–S battery with InPc@CNT-modified separator obtains a discharge-specific capacity of 1415 mAh g−1 at a high rate of 0.5 C. Additionally, the 2 Ah Li–S pouch cells deliver 315 Wh kg−1 and achieved 80% capacity retention after 50 cycles at 0.1 C with a high sulfur loading of 10 mg cm−2. Our study provides a practical method to introduce bifunctional electrocatalysts for boosting the electrochemical properties of Li–S batteries.

Total 3