PDF (1.5 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Publishing Language: Chinese

Research Progress and Application Status of High Hardness Transparent Glass-ceramics

Yong KONG1Zhuohao XIAO1()Ling CHENG1Shutian GE1Xiuying LI1Hongbo DONG2()Lingbing KONG1
Jingdezhen Ceramic University, Jingdezhen 333403, Jiangxi, China
Linyi University, Linyi 276005, Shandong, China
Show Author Information

Abstract

Glass-ceramics consist of a certain content of crystalline phase in residual glass phase obtained from the glasses through controlled heat treatment. It has a similar microstructure with ceramic materials of the same composition. However, because glass-ceramics could have zero porosity and full density, they have superior properties than the conventional ceramics. Most glasses are opaque after crystallization. By controlling the crystal size and content or adjusting the refractive index of the precipitated crystals through composition design, glass-ceramics of some systems could have translucency or even high transparency. Transparent glass-ceramics are widely used in military, industrial production, biotechnology, daily life and other fields, because they have the advantages of both glass in molding and optical properties and ceramics in mechanical properties and stability. Transparent mechanism, composition system and preparation process of glass-ceramics are systematically introduced, while the research progress and application status of Li2O-Al2O3-SiO2, MgO-Al2O3-SiO2, ZnO-Al2O3-SiO2 and other transparent glass-ceramics are discussed in depth.

CLC number: TQ174.75 Document code: A Article ID: 1000-2278(2022)06-0994-13

References

[1]

KURKJIAN C R, KAMMLOTT G K. Indentation behaviour of soda-lime glass, fused silica, and single-cystal quartz at liquid nitrogen temperature [J]. Journal of the American Ceramic Society, 1995, 78(3): 737-744.

[2]

WANG H P, CAO Q, PENG Q, et al. Atomistic Study of Mechanical Behaviors of Carbon Honeycombs [J]. Nanomaterials, 2019, 9(1): 109.

[3]

SUN H, SHÖDEMANN S, DUGNANI R. Characterization of shallow stress-profiles in chemically strengthened soda-lime glass [J]. Journal of Non-Crystalline Solids, 2019, 510: 130-142.

[4]

MACRELLI G. Chemically strengthened glass by ion exchange: Strength evaluation [J]. Internationa Journal of Applied Glass Science, 2018, 9(2): 156-166.

[5]

HÖLAND W, BEALL G H. Glass-Ceramic Technology, Third Edition [M]. New Jersey: John Wiley & Sons, 2019.

[7]

ZHANG C J, XIAO Z H, LU A X. Materials Reports, 2009, 23(13): 38-43, 53.

[8]

GEORGE H B, LINDA R P. Nanophase glass-ceramics [J]. Journal of American Ceramic Society, 1999, 82(1): 5-16.

[11]

WANG S H, LI X N, WANG C, et al. Anorthite-based transparent glass-ceramic glaze for ceramic tiles: Preparation and crystallization mechanism [J]. Journal of the European Ceramic Society, 2022, 42(3): 1132-1140.

[12]

ZHANG T H, ZHANG Z M, HAN J J, et al. The structure and properties of chemical strengthened transparent lithium disilicate glass ceramics with various P2O5 contents [J]. Journal of Non-Crystalline Solids, 2022, 588: 121626.

[13]

WANG J, LI C, XU B. Chemical Industry and Engineering, 2009, 26(3): 273-277.

[14]

GUO Y L, WANG J, RUAN J, et al. Microstructure and ion-exchange properties of glass-ceramics containing ZnAl2O4 and β-quartz solid solution nanocrystals [J]. Journal of the European Ceramic Society, 2021, 41(10): 5331-5340.

[15]

LI X C, MENG M, LI D, et al. Strengthening and toughening of a multi-component lithium disilicate glass-ceramic by ion-exchange [J]. Journal of the European Ceramic Society, 2020, 40(13): 4635-4646.

[16]

SHAN Z J, LIU J X, LIU M, et al. Surface strengthening of lithium disilicate glass-ceramic by ion-exchange using Rb, Cs nitrates [J]. Ceramics International, 2018, 44(11): 12466-12471.

[17]

ŁACZKA K, CHOLEWA K K, ŚRODA M, et al. Glass-ceramics of LAS (Li2O-Al2O3-SiO2) system enhanced by ion-exchange in KNO3 salt bath [J]. Journal of Non-Crystalline Solids, 2015, 428: 90-97.

[18]

REDKOV A V, LIPOVSKII A A, TAGANTSEV D K. Micro-Raman spectroscopy study of glass-ceramics with gradient of volume fraction of crystalline phase [J]. Journal of the American Ceramic Society, 2016, 99(8): 2558-2560.

[19]

BEALL G H, COMTE M, DEJNEKA M J, et al. Ion-exchange in glass-ceramics [J]. Frontiers in Materials, 2016, 3: 41.

[20]

ZHENG W H, GAO Z P, HUANG M, et al. Chemical strengthening of lithium aluminosilicate glass-ceramic with different crystallinity [J]. Journal of Non-Crystalline Solids, 2022, 598: 121940.

[21]

LU J W, WANG H F, ZHU J J, et al. Preparation and characterization of high-strength glass-ceramics via ion-exchange method [J]. Materials, 2021, 14(19): 5477.

[22]

YUAN T W, YUAN J, ZHENG W H, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(5): 1522-1526, 1555.

[24]

GUO Y L, LIU C, WANG J, et al. Effect of ZrO2 crystallization on ion exchange properties in aluminosilicate glass [J]. Journal of the European Ceramic Society, 2020, 40(5): 2179-2184.

[25]

WANG M L, ZHU P N, SUN S W, et al. Glass Enamel & Ophthalmic Optics, 1981(3): 1-8.

[26]

ZHANG J H, HUANG J H, YU Y J, et al. Effect of substitution of ZrO2 by SnO2 on crystallization and properties of environment-friendly Li2O-Al2O3-SiO2 system (LAS) glass-ceramics [J]. Ceramics International, 2022, 48(15): 21396-21402.

[27]

HAO X J, HU X L, LUO Z W, et al. Preparation and properties of transparent cordierite-based glass-ceramics with high crystallinity [J]. Ceramics International, 2015, 41(10): 14130-14136.

[28]

SEIDEL S, DITTMER M, WISNIEWSKI W, et al. Effect of the ZrO2 concentration on the crystallization behavior and the mechanical properties of high-strength MgO-Al2O3-SiO2 glass-ceramics [J]. Journal of Materials Science, 2017, 52(4): 1955-1968.

[29]

HUANG J H, ZHANG J H, YU Y J, et al. Transparent MgO-Al2O3-SiO2 glass-ceramics prepared with ZrO2and SnO2 as nucleating agents [J]. Journal of Non-Crystalline Solids, 2022, 588: 121585.

[30]

YI L L, ZHANG R X, KONG F H, et al. Refinement of Zn Al2O4 crystal in ZnO-Al2O3-SiO2 glass-ceramics by application of thermoelectric coupling field [J]. Ceramics International, 2022, 48(10): 14618-14625.

[31]

CHEN B X, HAN N, CAO X, et al. Microstructure and crystallization properties of Na2O-CaO-SiO2 glass system with different ZrO2 content [J]. Journal of Non-Crystalline Solids, 2021, 573: 121137.

[34]

SAINZ M A, MIRANZO P, OSENDI M I. Sintering behaviour and properties of YAlSiO and YAlSiON glass-ceramics [J]. Ceramics International, 2011, 37(5): 1485-1492.

[35]
SHIGEO K. Transparent crystalline glass: 3241985 [P]. 1966-5-22.
[36]

BORRELLI N F, LAYTON M M. Dielectric and optical properties of transparent ferroelectric glass-ceramic systems [J]. Journal of Non-Crystalline Solids, 1971, 6(3): 197-212.

[37]
PIROOZ P. Method of forming transparent glass ceramic with compression layer: 3854919 [P]. 1974-12-17.
[38]

TRANSPARENT GLASS CERAMICS GROUP. Journal of Inorganic Materials, 1974(1): 27-36.

[39]
NORBERT N. Transparent glass-ceramic laserable articles containing neodymium: 3928229 [P]. 1975-12-23.
[40]

WANG M L, STEVENS R, KNOTT P. Glass Enamel & Ophthalmic Optics, 1984(3): 1-9.

[41]

CHEN J H. Journal of Yancheng College of Technology, 1995, 8(2): 6-10, 25.

[43]

ZHOU Z Q, HE F, SHI M J, et al. Influences of Al2O3 content on crystallization and physical properties of LASglass-ceramics prepared from spodumene [J]. Journal of Non-Crystalline Solids, 2022, 576: 121256.

[44]

CHEN J M, SUN F M. Glass Enamel & Ophthalmic Optics, 1995(6): 1-4.

[45]

GHASEMZADEH M, NEMATI A, BAGHSHAHI S. Effects of nucleation agents on the preparation of transparent glass-ceramics [J]. Journal of the European Ceramic Society, 2012, 32(11): 2989-2994.

[46]

SANT’ANA GALLO L, CÉLARIÉF, BETTINI J, et al. Fracture toughness and hardness of transparent MgO-Al2O3-SiO2 glass-ceramics [J]. Ceramics International, 2022, 48(7): 9906-9917.

[47]
SIROTA M, GALUN E, GOLDSHTEIN A, et al. Glass ceramics for laser systems: 7507683 [P]. 2009-3-24.
[48]

HOU Z X. Journal of the Chinese Ceramic Society, 2007(6): 760-764.

[49]

TANG L Y, WANG J, CHENG J S, et al. Journal of the Chinese Ceramic Society, 2011, 39(1): 147-151.

[50]

PERFLER L, KAHLENBERG V, JAKOPIC G, et al. Thermal expansion, mechanical and optical properties of gallium and aluminum substituted Zn2TiO4 spinels [J]. Materials Research Bulletin, 2017, 95: 367-379.

[51]

BERTHIER T, FOKIN V M, ZANOTTO E D. New large grain, highly crystalline, transparent glass-ceramics [J]. Journal of Non-Crystalline Solids, 2008, 354(15): 1721-1730.

[52]

MUNIZ R F, SOARES V O, MONTAGNINI G H, et al. Thermal, optical and structural properties of relatively depolymerized sodium calcium silicate glass and glass-ceramic containing CaF2 [J]. Ceramics International, 2021, 47(17): 24966-24972.

[53]

WANG S M, KUANG F H, YE Q, et al. Laser properties of Nd2O3 doped Na2O-CaO-SiO2 transparent glass-ceramics for space solar energy [J]. Journal of Materials Science & Technology, 2016, 32(6): 583-586.

[54]

VOMACKA P, BABUSHKIN O. Crystallization of Y3Al5O12 from an oxynitride glass monitored by high-temperature X-ray diffractometry [J]. Journal of European Ceramic Society, 1996, 16(11): 1263-1269.

[55]

LUO Z W, LU A X, QU G, et al. The Chinese Journal of Nonferrous Metals, 2013, 23(4): 1099-1106.

[56]

WANG X G. Foreign Tank, 2009(5): 44-51.

[57]

GRUJICIC M, BELL W C, PANDURANGAN B. Design and material selection guidelines and strategies for transparent armor systems [J]. Materials & Design, 2012, 34: 808-819.

[58]

BENITEZ T, GÓMEZ S Y, DE OLIVEIRA A P N, et al. Transparent ceramic and glass-ceramic materials for armor applications [J]. Ceramics International, 2017, 43(16): 13031-13046.

[59]

XIA W B, JIANG H, LU P. Glass Enamel & Ophthalmic Optics, 2014, 42(1): 37-42, 32.

[60]

PINCKNEY L R. Transparent, high strain point spinel glass-ceramics [J]. Journal of Non-Crystalline Solids, 1999, 255(2/3): 171-177.

[64]

WANG F, CHEN J H, GAO J. Journal of Functional Materials, 2009, 40(3): 455-458.

[65]

LACZKA M, LACZKA K, CHOLEWA K K, et al. Mechanical properties of a lithium disilicate strengthened lithium aluminosilicate glass-ceramic [J]. Journal of the American Ceramic Society, 2014, 97(2): 361-364.

[66]

PENG Z X, RAHMAN M I A, ZHANG Y, et al. Wear behavior of pressable lithium disilicate glass ceramic [J]. Journal of biomedical materials research. Part B, Applied biomaterials, 2016, 104(5): 968-978.

[68]

SOARES V O, SERBENA F C, OLIVEIRA G S, et al. Highly translucent nanostructured glass-ceramic [J]. Ceramics International, 2021, 47(4): 4707-4714.

Journal of Ceramics
Pages 994-1006
Cite this article:
KONG Y, XIAO Z, CHENG L, et al. Research Progress and Application Status of High Hardness Transparent Glass-ceramics. Journal of Ceramics, 2022, 43(6): 994-1006. https://doi.org/10.13957/j.cnki.tcxb.2022.06.005
Metrics & Citations  
Article History
Copyright
Return