Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Low thermal expansion ceramics are defined as ceramic materials with a thermal expansion coefficient below 2.0×10-6 ℃-1. Compared to other conventional ceramics, these materials exhibit exceptional resistance to high temperatures and thermal shock, maintaining stability in complex environments characterized by high temperatures and abrupt temperature changes. They find widespread application in various fields, including refractory materials, catalyst carriers, electronic devices, and aerospace. This article reviews the classification, preparation methods, and application domains of low thermal expansion ceramics, and examines the research advancements of several common types such as cordierite, aluminum titanate, NaZr2(PO4)3, and lithium ceramics. Additionally, the article discusses the development trends in this field.
HIRATA Y, TAKEHARA K, SHIMONOSONO T. Analyses of young's modulus and thermal expansion coefficient of sintered porous alumina compacts [J]. Ceramics International, 2017, 43(15): 12321–12327.
YANG C, LI J P, YANG D L, et al. ZrW2O8 with negative thermal expansion fabricated at ultralow temperature: An energy-efficient strategy for metastable material fabrication [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 14747–14755.
CHEN W W, SHUI A Z, SHAN Q L, et al. The influence of different additives on microstructure and mechanical properties of aluminum titanate ceramics [J]. Ceramics International, 2021, 47(1): 1169–1176.
PILATE P, FLORIMOND D. Low thermal expansion ceramic and glass-ceramic materials [J]. Encyclopedia of Materials: Technical Ceramics and Glasses, 2021, 2: 47–58.
YUICHI K, MASAKI K, MAKIKO K, et al. Effect of microstructure on the thermal expansion coefficient of sintered cordierite prepared from sol mixtures [J]. Journal of the American Ceramic Society, 2013, 96(6): 1863–1868.
SAIKAT M, BHATTACHARYA S, SIL G, et al. Aluminium titanate ceramics—A review [J]. Transactions of the Indian Ceramic Society, 2002, 61(2): 69–98.
LAO X B, XU X Y, JIANG W H, et al. Influences of impurities and mineralogical structure of different kaolin minerals on thermal properties of cordierite ceramics for high-temperature thermal storage [J]. Applied Clay Science, 2020, 187: 105485.
OHYA Y, YAMAMOTO S, BAN T, et al. Thermal expansion and mechanical properties of self-reinforced aluminum titanate ceramics with elongated grains [J]. Journal of the European Ceramic Society, 2017, 37(4): 1673–1680.
LIU Y X, ZHANG X L, LIU R X, et al. Excellent mechanical property of fast hot pressure sintering CaZr4(PO4)6 low thermal expansion ceramics [J]. Ceramics International, 2022, 48(24): 36758–36763.
LI H, XU H Z, WANG Y Y, et al. Preparation and properties of NZP family ceramics [J]. Solid State Phenomena, 2018, 281: 450–455.
WU Y Q, TIAN Y M, WU Y Q, et al. Preparation study for the low thermal expansion spodumene/mullite composites [J]. International Journal of Applied Ceramic Technology, 2021, 19(3): 1702–1712.
RANKIN G A, MERWIN H E. The ternary system Mg O-Al2O3-SiO2 [J]. American Journal of Science, 1918, 45: 301–325.
ZHANG J H, KE C M, WU H D, et al. Preparation and anisotropic lattice thermal expansion of hexagonal cordierite [J]. Key Engineering Materials, 2017, 726: 470–477.
LI Y R, WANG J M, SUN L C, et al. Mechanisms of ultralow and anisotropic thermal expansion in cordierite Mg2Al4Si5O18: Insight from phonon behaviors [J]. Journal of the American Ceramic Society, 2018, 101(10): 4708–4718.
HE S C, SUN H X, DONG Y M, et al. Thermal, mechanical, and dielectric properties of Gd2O3 doped cordierite ceramics [J]. Journal of Materials Science: Materials in Electronics, 2024, 35(14): 988.
WANG H, WANG S X, MENG Z, et al. Mechanism of cordierite formation obtained by high temperature sintering technique [J]. Ceramics International, 2023, 49(12): 20544–20555.
SHI Z M, BAI X, WANG X F. Ce4+-modified cordierite ceramics [J]. Ceramics International, 2006, 32(6): 723–726.
KHATTAB R M, SADEK H E H, AJIBA N A, et al. The effect of β-eucryptite on cordierite ceramic materials prepared using a temperature-induced forming technique [J]. Journal of the European Ceramic Society, 2023, 43(5): 2253–2268.
JUNLAR P, WASANAPIARNPONG T, PUNSUKMTANA L, et al. Fabrication and characterization of low thermal expansion cordierite/spodumene/mullite composite ceramic for cookware [J]. Key Engineering Materials, 2018, 766: 276–281.
TSETSEKOU A. A comparison study of tialite ceramics doped with various oxide materials and tialite–mullite composites: microstructural, thermal and mechanical properties [J]. Journal of the European Ceramic Society, 2005, 25(4): 335–348.
KALPAKLI Y. Effect of TiO2 addition on Al2TiO5 (tialite) phase evolution of in situ MgAl2O4 formation zero cement castable (ZCC) [J]. Advances in Applied Ceramics, 2014, 113(5): 282–289.
HUANG Y X, SENOS A M, BAPTISTA J L. Effect of excess SiO2 on the reaction sintering of aluminium titanate–25 vol% mullite composites [J]. Ceramics International, 1998, 24(3): 223–228.
HUANG X H, SONG X X, YANG N, et al. Sintering and characterization of aluminum titanate ceramics with enhanced thermomechanical properties [J]. International Journal of Applied Ceramic Technology, 2022, 19(4): 1939–1948.
ZHOU Y Q, HE C, MA Q, et al. Effects of rare-earth oxides on the microstructure and mechanical properties of Al2TiO5 flexible ceramics [J]. Ceramics International, 2023, 49(11): 18937–18948.
PAPITHA R, BUCHI S M, DAS D, et al. Mineral-oxide-doped aluminum titanate ceramics with improved thermomechanical properties [J]. Journal of Ceramics, 2012, 2013: 1–9.
VIOLINI M A, HERNÁNDEZ M F, GAUNA M, et al. Low (and negative) thermal expansion Al2TiO5 materials and Al2TiO5-3Al2O3·2SiO2-ZrTiO4 composite materials. Processing, initial zircon proportion effect, and properties [J]. Ceramics International, 2018, 44(17): 21470–21477.
ALAMO J, ROY R. Crystal chemistry of the NaZr2(PO4)3, NZP or CTP, structure family [J]. Journal of Materials Science, 1986, 21(2): 444–450.
HAGMAN L O, KIERKEGAARD P, KARVONEN P, et al. The crystal structure of NaMe2IV(PO4)3; MeⅣ=Ge, Ti, Zr [J]. Acta Chemica Scandinavica, 1968, 22: 1822–1832.
BOILOT J P, SALANIE J P, DESPLANCHES G, et al. Phase transformation in Na1+xSixZr2P3-xO12 compounds [J]. Materials Research Bulletin, 1979, 14(11): 1469–1477.
DOVE M T, FANG H. Negative thermal expansion and associated anomalous physical properties: Review of the lattice dynamics theoretical foundation [J]. Reports on Progress in Physics, 2016, 79(6): 066503.
LIU X S, LI F, SONG W B, et al. Control of reaction processes for rapid synthesis of low-thermal-expansion Ca1-xSrxZr4P6O24 ceramics [J]. Ceramics International, 2014, 40(4): 6013–6020.
NORDMANN A, CHENG Y B. Microstructure and properties of spodumene based Li-Si-Al-O-N glass ceramics [J]. British Ceramic Transactions, 1997, 96: 141–148.
OGIWARA T, NODA Y, SHOJI K. Low-temperature sintering of β-spodumene ceramics using Li2O–GeO2 as a sintering additive [J]. Journal of the American Ceramic Society, 2013, 96(8): 2577–2582.
AWAAD M, MORTEL H, NAGA S. Densification, mechanical and microstructure properties of β-spodumene—alumina composites [J]. Journal of Materials Science Materials in Electronics, 2005, 16(6): 377–381.
WU J F, HU C, XU X Y, et al. Preparation and thermal shock resistance of cordierite-spodumene composite ceramics for solar heat transmission pipeline [J]. Ceramics International, 2016, 42(12): 13547–13554.
KUSCER D, BANTAN I, HROVAT M, et al. The microstructure, coefficient of thermal expansion and flexural strength of cordierite ceramics prepared from alumina with different particle sizes [J]. Journal of the European Ceramic Society, 2017, 37(2): 739–746.
BWNHAMMOU A, ELHAFIANE Y, ABOURRICHE A, et al. Influence of sintering temperature on the microstructural and mechanical properties of cordierite synthesized from andalusite and talc [J]. Materials Letters, 2016, 172: 198–201.
WANG S X, WANG H, CHEN Z W, et al. Fabrication and characterization of porous cordierite ceramics prepared from fly ash and natural minerals [J]. Ceramics International, 2019, 45(15): 18306–18314.
CHAKRABORTY N, CHAKRABARTI J, GUPTA A D, et al. Synthesis and characterization of Ca1-xSrxZr4(PO4)6 (0≤x<1) type of NZP based low expansion ceramics [J]. Transactions of the Indian Ceramic Society, 2004, 63(1): 33–38.
LI W, XU Z J, CHU R Q, et al. Synthesis and characterization of (Na0.85K0.15)0.5Bi0.5TiO3 ceramics by different methods [J]. Materials Research Bulletin, 2011, 46(6): 871–874.
LI W, XU Z J, CHU R Q, et al. Structure and electrical properties of BaTiO3 prepared by sol–gel process [J]. Journal of Alloys and Compounds, 2009, 482(1): 137–140.
WANG Y, ZHOU Y Y, TONG N, et al. Crystal structure, mechanical and thermophysical properties of Ca0.5Sr0.5Zr4-xSnxP6O24 ceramics [J]. Journal of Alloys and Compounds, 2019, 784: 8–15.
KOMARNENI S. Hydrothermal preparation of the lowexpansion NZP family of materials [J]. International Journal of High Technology Ceramics, 1988, 4(1): 31–39.
CHAE K W, SON M A, PARK S J, et al. Effect of sintering atmosphere on the crystallizations, porosity, and thermal expansion coefficient of cordierite honeycomb ceramics [J]. Ceramics International, 2021, 47(14): 19526–19537.
NIE D, WANG H, WANG J J, et al. Effect of starch pore formers with different particle sizes on cordierite porous ceramics [J]. Journal of Physics: Conference Series, 2023, 2557(1): 012092.
LOU W C, MAO M M, SONG K X, et al. Low permittivity cordierite-based microwave dielectric ceramics for 5G/6G telecommunications [J]. Journal of the European Ceramic Society, 2022, 42(6): 2820–2826.
WU S, SONG K X, LIU P, et al. Effect of TiO2 doping on the structure and microwave dielectric properties of cordierite ceramics [J]. Journal of the American Ceramic Society, 2015, 98(6): 1842–1847.