AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (26.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Band and defect engineering in solution-processed nanocrystal building blocks to promote transport properties in nanomaterials: The case of thermoelectric Cu3SbSe4

Shanshan Xiao1Mingjun Zhao1Mingquan Li1Shanhong Wan1Aziz Genç2Lulu Huang3Lei Chen4Yu Zhang5Maria Ibáñez6Khak Ho Lim7,8 ( )Min Hong4( )Yu Liu1 ( )Andreu Cabot9,10 ( )
School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
Centre for Future Materials and School of Engineering, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
Institute of Wenzhou-Zhejiang University, Wenzhou 325028, China
Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310007, China
Institute of Zhejiang University-Quzhou, Quzhou 324000, China
Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona 08930, Spain
Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, Barcelona, Catalonia 08010, Spain
Show Author Information

Graphical Abstract

The enhancement of thermoelectric performance in Cu3SbSe4 is achieved through three distinct strategies, with findings highlighting that surface treatment using SnSe molecular complexes significantly optimizes transport properties via band and defect engineering. This research underscores the superior efficacy of surface engineering, offering a promising and cost-effective approach for improving thermoelectric properties.

Abstract

The development of cost-effective and high-performance thermoelectric (TE) materials faces significant challenges, particularly in improving the properties of promising copper-based TE materials such as Cu3SbSe4, which are limited by their poor electrical conductivity. This study presents a detailed comparative analysis of three strategies to promote the electrical transport properties of Cu3SbSe4 through Sn doping: conventional Sn atomic doping, surface treatment with SnSe molecular complexes, and blending with SnSe nanocrystals to form nanocomposites, all followed by annealing and hot pressing under identical conditions. Our results reveal that a surface treatment using SnSe molecular complexes significantly enhances TE performance over atomic doping and nanocomposite formation, achieving a power factor of 1.1 mW·m−1·K−2 and a maximum dimensionless figure of merit zT value of 0.80 at 640 K, representing an excellent performance among Cu3SbSe4-based materials produced via solution-processing methods. This work highlights the effectiveness of surface engineering in optimizing the transport properties of nanostructured materials, demonstrating the versatility and cost-efficiency of solution-based technologies in the development of advanced nanostructured materials for application in the field of TE among others.

Electronic Supplementary Material

Download File(s)
7072_ESM.pdf (5.7 MB)

References

[1]

Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461.

[2]

He, J.; Tritt, T. M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357, eaak9997.

[3]

Shi, X. L.; Zou, J.; Chen, Z. G. Advanced thermoelectric design: From materials and structures to devices. Chem. Rev. 2020, 120, 7399–7515.

[4]

Ortega, S.; Ibáñez, M.; Liu, Y.; Zhang, Y.; Kovalenko, M. V.; Cadavid, D.; Cabot, A. Bottom-up engineering of thermoelectric nanomaterials and devices from solution-processed nanoparticle building blocks. Chem. Soc. Rev. 2017, 46, 3510–3528.

[5]

Liu, Y.; Ibáñez, M. Tidying up the mess. Science 2021, 371, 678–679.

[6]

Tan, G. J.; Zhao, L. D.; Kanatzidis, M. G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 2016, 116, 12123–12149.

[7]

Ibáñez, M.; Luo, Z. S.; Genç, A.; Piveteau, L.; Ortega, S.; Cadavid, D.; Dobrozhan, O.; Liu, Y.; Nachtegaal, M.; Zebarjadi, M. et al. High-performance thermoelectric nanocomposites from nanocrystal building blocks. Nat. Commun. 2016, 7, 10766.

[8]

He, P. L.; Wu, Y. Constructing of highly porous thermoelectric structures with improved thermoelectric performance. Nano Res. 2021, 14, 3608–3615.

[9]

Qin, Y. X.; Qin, B. C.; Hong, T.; Zhang, X.; Wang, D. Y.; Liu, D. R.; Wang, Z. Y.; Su, L. Z.; Wang, S. N.; Gao, X. et al. Grid-plainification enables medium-temperature PbSe thermoelectrics to cool better than Bi2Te3. Science 2024, 383, 1204–1209.

[10]

Jiang, B. B.; Yu, Y.; Cui, J.; Liu, X. X.; Xie, L.; Liao, J. C.; Zhang, Q. H.; Huang, Y.; Ning, S. C.; Jia, B. H. et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 2021, 371, 830–834.

[11]

Ibáñez, M.; Genç, A.; Hasler, R.; Liu, Y.; Dobrozhan, O.; Nazarenko, O.; de la Mata, M.; Arbiol, J.; Cabot, A.; Kovalenko, M. V. Tuning transport properties in thermoelectric nanocomposites through inorganic ligands and heterostructured building blocks. ACS Nano 2019, 13, 6572–6580.

[12]

Cadavid, D.; Ortega, S.; Illera, S.; Liu, Y.; Ibáñez, M.; Shavel, A.; Zhang, Y.; Li, M. Y.; López, A. M.; Noriega, G. et al. Influence of the ligand stripping on the transport properties of nanoparticle-based PbSe nanomaterials. ACS Appl. Energy Mater. 2020, 3, 2120–2129.

[13]

Li, M. Y.; Zhao, X. K.; Wang, D. Y.; Han, X.; Yang, D. W.; Wu, B. T.; Song, H. Z.; Jia, M. C.; Liu, Y.; Arbiol, J. et al. Enhancing the thermoelectric and mechanical properties of p-type PbS through band convergence and microstructure regulation. Nano Lett. 2024, 24, 8126–8133.

[14]

Zhu, Z. Y.; Tiwari, J.; Feng, T. L.; Shi, Z.; Lou, Y.; Xu, B. High thermoelectric properties with low thermal conductivity due to the porous structure induced by the dendritic branching in n-type PbS. Nano Res. 2022, 15, 4739–4746.

[15]

Zhu, T. J.; Liu, Y. T.; Fu, C. G.; Heremans, J. P.; Snyder, J. G.; Zhao, X. B. Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater. 2017, 29, 1605884.

[16]

Hao, F.; Qiu, P. F.; Tang, Y. S.; Bai, S. Q.; Xing, T.; Chu, H. S.; Zhang, Q. H.; Lu, P.; Zhang, T. S.; Ren, D. D. et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 °C. Energy Environ. Sci. 2016, 9, 3120–3127.

[17]

Liu, Y.; Zhang, Y.; Lim, K. H.; Ibáñez, M.; Ortega, S.; Li, M. Y.; David, J.; Martí-Sánchez, S.; Ng, K. M.; Arbiol, J. et al. High thermoelectric performance in crystallographically textured n-type Bi2Te3− x Se x produced from asymmetric colloidal nanocrystals. ACS Nano 2018, 12, 7174–7184.

[18]

Liu, Y.; Zhang, Y.; Ortega, S.; Ibáñez, M.; Lim, K. H.; Grau-Carbonell, A.; Martí-Sánchez, S.; Ng, K. M.; Arbiol, J.; Kovalenko, M. V. et al. Crystallographically textured nanomaterials produced from the liquid phase sintering of Bi x Sb2− x Te3 nanocrystal building blocks. Nano Lett. 2018, 18, 2557–2563.

[19]

Zhang, H.; Momand, J.; Levinsky, J.; Guo, Q. K.; Zhu, X. T.; ten Brink, G. H.; Blake, G. R.; Palasantzas, G.; Kooi, B. J. Nanostructure and thermal power of highly-textured and single-crystal-like Bi2Te3 thin films. Nano Res. 2022, 15, 2382–2390.

[20]

Wei, T. R.; Qin, Y. T.; Deng, T. T.; Song, Q. F.; Jiang, B. B.; Liu, R. H.; Qiu, P. F.; Shi, X.; Chen, L. D. Copper chalcogenide thermoelectric materials. Sci. China Mater. 2019, 62, 8–24.

[21]

Qiu, P. F.; Shi, X.; Chen, L. D. Cu-based thermoelectric materials. Energy Storage Mater. 2016, 3, 85–97.

[22]

Lim, K. H.; Li, M. Q.; Zhang, Y.; Wu, Y.; Zhou, Q. M.; Wang, Q. Y.; Yang, X.; Liu, P. W.; Wang, W. J.; Wong, K. W. et al. Modulation doping of p-type Cu12Sb4S13 toward improving thermoelectric performance. J. Mater. Sci. Technol. 2024, 171, 71–79.

[23]

Liu, W. D.; Yang, L.; Chen, Z. G.; Zou, J. Promising and eco-friendly Cu2X-based thermoelectric materials: Progress and applications. Adv. Mater. 2020, 32, 1905703.

[24]

Liu, H. L.; Shi, X.; Xu, F. F.; Zhang, L. L.; Zhang, W. Q.; Chen, L. D.; Li, Q.; Uher, C.; Day, T.; Snyder, G. J. Copper ion liquid-like thermoelectrics. Nat. Mater. 2012, 11, 422–425.

[25]

He, Y.; Day, T.; Zhang, T. S.; Liu, H. L.; Shi, X.; Chen, L. D.; Snyder, G. J. High thermoelectric performance in non-toxic earth-abundant copper sulfide. Adv. Mater. 2014, 26, 3974–3978.

[26]

Zhang, Y.; Xing, C. C.; Liu, Y.; Spadaro, M. C.; Wang, X.; Li, M. Y.; Xiao, K.; Zhang, T.; Guardia, P.; Lim, K. H. et al. Doping-mediated stabilization of copper vacancies to promote thermoelectric properties of Cu2− x S. Nano Energy 2021, 85, 105991.

[27]

Li, M. Y.; Liu, Y.; Zhang, Y.; Han, X.; Zhang, T.; Zuo, Y.; Xie, C. Y.; Xiao, K.; Arbiol, J.; Llorca, J. et al. Effect of the annealing atmosphere on crystal phase and thermoelectric properties of copper sulfide. ACS Nano 2021, 15, 4967–4978.

[28]

Xing, C. C.; Zhang, Y.; Xiao, K.; Han, X.; Liu, Y.; Nan, B. F.; Ramon, M. G.; Lim, K. H.; Li, J. S.; Arbiol, J. et al. Thermoelectric performance of surface-engineered Cu1.5− x Te-Cu2Se nanocomposites. ACS Nano 2023, 17, 8442–8452.

[29]

Ming, H. W.; Zhu, G. F.; Zhu, C.; Qin, X. Y.; Chen, T.; Zhang, J.; Li, D.; Xin, H. X.; Jabar, B. Boosting thermoelectric performance of Cu2SnSe3 via comprehensive band structure regulation and intensified phonon scattering by multidimensional defects. ACS Nano 2021, 15, 10532–10541.

[30]

Song, J. M.; Liu, Y.; Niu, H. L.; Mao, C. J.; Cheng, L. J.; Zhang, S.-Y.; Shen, Y. H. Hot-injection synthesis and characterization of monodispersed ternary Cu2SnSe3 nanocrystals for thermoelectric applications. J. Alloys Compd. 2013, 581, 646–652.

[31]

Huang, L. L.; Li, Y. Y.; Sha, S. M.; Ge, B. Z.; Wu, Y. C.; Yan, J.; Kong, Y.; Zhang, J. Engineering multiple microstructural defects for record-breaking thermoelectric properties of chalcopyrite Cu1− x Ag x GaTe2. Small 2023, 19, 2206865.

[32]

Plirdpring, T.; Kurosaki, K.; Kosuga, A.; Day, T.; Firdosy, S.; Ravi, V.; Snyder, G. J.; Harnwunggmoung, A.; Sugahara, T.; Ohishi, Y. et al. Chalcopyrite CuGaTe2: A high-efficiency bulk thermoelectric material. Adv. Mater. 2012, 24, 3622–3626.

[33]

Ibáñez, M.; Zamani, R.; LaLonde, A.; Cadavid, D.; Li, W. H.; Shavel, A.; Arbiol, J.; Morante, J. R.; Gorsse, S.; Snyder, G. J. et al. Cu2ZnGeSe4 nanocrystals: Synthesis and thermoelectric properties. J. Am. Chem. Soc. 2012, 134, 4060–4063.

[34]

Wei, T. R.; Wang, H.; Gibbs, Z. M.; Wu, C. F.; Snyder, G. J.; Li, J. F. Thermoelectric properties of Sn-doped p-type Cu3SbSe4: A compound with large effective mass and small band gap. J. Mater. Chem. A 2014, 2, 13527–13533.

[35]

Liu, Y.; García, G.; Ortega, S.; Cadavid, D.; Palacios, P.; Lu, J.; Ibáñez, M.; Xi, L.; De Roo, J.; López, A. M. et al. Solution-based synthesis and processing of Sn- and Bi-doped Cu3SbSe4 nanocrystals, nanomaterials and ring-shaped thermoelectric generators. J. Mater. Chem. A 2017, 5, 2592–2602.

[36]
Berger, L. I.; Prochukhan, V. D. Ternary diamond-like semiconductors; Springer: New York, 2012.
[37]

García, G.; Palacios, P.; Cabot, A.; Wahnón, P. Thermoelectric properties of doped-Cu3SbSe4 compounds: A first-principles insight. Inorg. Chem. 2018, 57, 7321–7333.

[38]

Do, D. T.; Mahanti, S. D. Theoretical study of defects Cu3SbSe4: Search for optimum dopants for enhancing thermoelectric properties. J. Alloys Compd. 2015, 625, 346–354.

[39]

Chang, C. H.; Chen, C. L.; Chiu, W. T.; Chen, Y. Y. Enhanced thermoelectric properties of Cu3SbSe4 by germanium doping. Mater. Lett. 2017, 186, 227–230.

[40]

Zhang, D.; Yang, J. Y.; Jiang, Q. H.; Zhou, Z. W.; Li, X.; Xin, J. W.; Basit, A.; Ren, Y. Y.; He, X.; Chu, W. J. et al. Combination of carrier concentration regulation and high band degeneracy for enhanced thermoelectric performance of Cu3SbSe4. ACS Appl. Mater. Interfaces 2017, 9, 28558–28565.

[41]

Wan, S. H.; Xiao, S. S.; Li, M. Q.; Wang, X.; Lim, K. H.; Hong, M.; Ibáñez, M.; Cabot, A.; Liu, Y. Band engineering through Pb-doping of nanocrystal building blocks to enhance thermoelectric performance in Cu3SbSe4. Small Methods 2024, 8, e2301377.

[42]

Zhou, T.; Wang, L. J.; Zheng, S. Q.; Hong, M.; Fang, T.; Bai, P. P.; Chang, S. Y.; Cui, W. L.; Shi, X. L.; Zhao, H. Z. et al. Self-assembled 3D flower-like hierarchical Ti-doped Cu3SbSe4 microspheres with ultralow thermal conductivity and high zT. Nano Energy 2018, 49, 221–229.

[43]

Bo, L.; Wang, Y. P.; Wang, W. Y.; Wang, L.; Li, F. J.; Zuo, M.; Ma, Y. Z.; Zhao, D. G. Grain size and compositional gradient dependence of thermoelectric performance for Cu3– x Ni x SbSe4 materials. Results Phys. 2021, 26, 104337.

[44]

Wang, B. Y.; Zheng, S. Q.; Chen, Y. X.; Wu, Y.; Li, J.; Ji, Z.; Mu, Y. N.; Wei, Z. B.; Liang, Q.; Liang, J. X. Band engineering for realizing large effective mass in Cu3SbSe4 by Sn/La codoping. J. Phys. Chem. C 2020, 124, 10336–10343.

[45]

Wei, S. T.; Yu, L.; Zhang, Z. P.; Ji, Z.; Luo, S. T.; Liang, J. X.; Song, W. Y.; Zheng, S. Q. Enhancing the effective mass and covalent bond strength of Cu3SbSe4-based thermoelectric materials by Mn/Sn co-doping. Mater. Today Phys. 2023, 38, 101260.

[46]

Scott, W.; Kench, J. R. Phase diagram and properties of Cu3SbSe4 and other A3IBVC4VI compounds. Mater. Res. Bull. 1973, 8, 1257–1267.

[47]

Zhang, D.; Yang, J. Y.; Jiang, Q. H.; Zhou, Z. W.; Li, X.; Ren, Y. Y.; Xin, J. W.; Basit, A.; He, X.; Chu, W. J. et al. Simultaneous optimization of the overall thermoelectric properties of Cu3SbSe4 by band engineering and phonon blocking. J. Alloys Compd. 2017, 724, 597–602.

[48]

Zhang, D.; Zhong, R. Q.; Gao, S. K.; Yang, L.; Xu, F.; He, P.; Liu, G. N.; San, X.; Yang, J. Y.; Luo, Y. B. et al. Reinforcing bond covalency for high thermoelectric performance in Cu3SbSe4-based thermoelectric material. Sci. China Mater. 2023, 66, 3644–3650.

[49]

Liu, Y.; Calcabrini, M.; Yu, Y.; Genç, A.; Chang, C.; Costanzo, T.; Kleinhanns, T.; Lee, S.; Llorca, J.; Cojocaru-Mirédin, O. et al. The importance of surface adsorbates in solution-processed thermoelectric materials: The case of SnSe. Adv. Mater. 2021, 33, 2106858.

[50]

Fiedler, C.; Calcabrini, M.; Liu, Y.; Ibáñez, M. Unveiling crucial chemical processing parameters influencing the performance of solution-processed inorganic thermoelectric materials. Angew. Chem., Int. Ed. 2024, 63, e202402628.

[51]

McCarthy, C. L.; Webber, D. H.; Schueller, E. C.; Brutchey, R. L. Solution-phase conversion of bulk metal oxides to metal chalcogenides using a simple thiol-amine solvent mixture. Angew. Chem. Int. Ed. 2015, 54, 8378–8381.

[52]

Ibáñez, M.; Hasler, R.; Genç, A.; Liu, Y.; Kuster, B.; Schuster, M.; Dobrozhan, O.; Cadavid, D.; Arbiol, J.; Cabot, A. et al. Ligand-mediated band engineering in bottom-up assembled SnTe nanocomposites for thermoelectric energy conversion. J. Am. Chem. Soc. 2019, 141, 8025–8029.

[53]

Nes, E.; Ryum, N.; Hunderi, O. On the zener drag. Acta Metall. 1985, 33, 11–22.

[54]

Manohar, P. A.; Ferry, M.; Chandra, T. Five decades of the zener equation. ISIJ Int. 1998, 38, 913–924.

[55]

Liu, Y.; Calcabrini, M.; Yu, Y.; Lee, S.; Chang, C.; David, J.; Ghosh, T.; Spadaro, M. C.; Xie, C. Y.; Cojocaru-Mirédin, O. et al. Defect engineering in solution-processed polycrystalline SnSe leads to high thermoelectric performance. ACS Nano 2022, 16, 78–88.

[56]

Fiedler, C.; Liu, Y.; Ibáñez, M. Solution-processed, surface-engineered, polycrystalline CdSe-SnSe exhibiting low thermal conductivity. J. Vis. Exp. 2024, 207, e66278.

[57]

Liu, Y.; Lee, S.; Fiedler, C.; Chiara Spadaro, M.; Chang, C.; Li, M. Q.; Hong, M.; Arbiol, J.; Ibáñez, M. Enhancing thermoelectric performance of solution-processed polycrystalline SnSe with PbSe nanocrystals. Chem. Eng. J. 2024, 490, 151405.

[58]

Chang, C.; Liu, Y.; Ho Lee, S.; Spadaro, M. C.; Koskela, K. M.; Kleinhanns, T.; Costanzo, T.; Arbiol, J.; Brutchey, R. L.; Ibáñez, M. Surface functionalization of surfactant-free particles: A strategy to tailor the properties of nanocomposites for enhanced thermoelectric performance. Angew. Chem., Int. Ed. 2022, 61, e202207002.

[59]

Cadavid, D.; Wei, K. Y.; Liu, Y.; Zhang, Y.; Li, M. Y.; Genç, A.; Berestok, T.; Ibáñez, M.; Shavel, A.; Nolas, G. S. et al. Synthesis, bottom up assembly and thermoelectric properties of Sb-doped PbS nanocrystal building blocks. Materials. 2021, 14, 853.

[60]

Dolzhnikov, D. S.; Zhang, H.; Jang, J.; Son, J. S.; Panthani, M. G.; Shibata, T.; Chattopadhyay, S.; Talapin, D. V. Composition-matched molecular “solders” for semiconductors. Science 2015, 347, 425–428.

[61]

Lee, Y. K.; Luo, Z. Z.; Cho, S. P.; Kanatzidis, M. G.; Chung, I. Surface oxide removal for polycrystalline SnSe reveals near-single-crystal thermoelectric performance. Joule 2019, 3, 719–731.

[62]

Zhou, C. J.; Lee, Y. K.; Yu, Y.; Byun, S.; Luo, Z. Z.; Lee, H.; Ge, B. Z.; Lee, Y. L.; Chen, X. Q.; Lee, J. Y. et al. Polycrystalline SnSe with a thermoelectric figure of mMerit greater than the single crystal. Nat. Mater. 2021, 20, 1378–1384.

[63]

Liu, Y.; Li, M. Q.; Wan, S. H.; Lim, K. H.; Zhang, Y.; Li, M. Y.; Li, J. S.; Ibáñez, M.; Hong, M.; Cabot, A. Surface chemistry and band engineering in AgSbSe2: Toward high thermoelectric performance. ACS Nano 2023, 17, 11923–11934.

[64]

Snyder, G. J.; Snyder, A. H.; Wood, M.; Gurunathan, R.; Snyder, B. H.; Niu, C. N. Weighted mobility. Adv. Mater. 2020, 32, 2001537.

[65]

Wang, B. Y.; Wang, Y. L.; Zheng, S. Q.; Liu, S. C.; Li, J.; Chang, S. Y.; An, T.; Sun, W. L.; Chen, Y. X. Improvement of thermoelectric properties of Cu3SbSe4 hierarchical with in-situ second phase synthesized by microwave-assisted solvothermal method. J. Alloys Compd. 2019, 806, 676–682.

[66]

Wang, B. Y.; Zheng, S. Q.; Wang, Q.; Li, Z. L.; Li, J.; Zhang, Z. P.; Wu, Y.; Zhu, B. S.; Wang, S. Y.; Chen, Y. X. et al. Synergistic modulation of power factor and thermal conductivity in Cu3SbSe4 towards high thermoelectric performance. Nano Energy 2020, 71, 104658.

[67]

Zhang, D.; Yang, J. Y.; Jiang, Q. H.; Fu, L. W.; Xiao, Y.; Luo, Y. B.; Zhou, Z. W. Improvement of thermoelectric properties of Cu3SbSe4 compound by In doping. Mater. Des. 2016, 98, 150–154.

[68]

Li, D.; Li, R.; Qin, X. Y.; Zhang, J.; Song, C. J.; Wang, L.; Xin, H. X. Co-precipitation synthesis of Sn and/or S doped nanostructured Cu3Sb1− x Sn x Se4− y S y with a high thermoelectric performance. CrystEngComm 2013, 15, 7166–7170.

[69]

Yang, C. Y.; Huang, F. Q.; Wu, L. M.; Xu, K. New stannite-like p-type thermoelectric material Cu3SbSe4. J. Phys. D: Appl. Phys. 2011, 44, 295404.

[70]

Wang, W. Y.; Wang, Y. P.; Bo, L.; Wang, L.; Li, F. J.; Zuo, M.; Zhao, D. G. Enhanced thermoelectric properties of Cu3SbSe4 via compositing with nano-SnTe. J. Alloys Compd. 2021, 878, 160358.

[71]

Zhao, L. J.; Yu, L. H.; Yang, J.; Wang, M. Y.; Shao, H. C.; Wang, J. L.; Shi, Z. Q.; Wan, N.; Hussain, S.; Qiao, G. J. et al. Enhancing thermoelectric and mechanical properties of p-type Cu3SbSe4-based materials via embedding nanoscale Sb2Se3. Mater. Chem. Phys. 2022, 292, 126669.

[72]

Zhang, D.; Yang, J. Y.; Bai, H. C.; Luo, Y. B.; Wang, B.; Hou, S. H.; Li, Z. L.; Wang, S. F. Significant average: ZT enhancement in Cu3SbSe4-based thermoelectric material via softening p-d hybridization. J. Mater. Chem. A 2019, 7, 17648–17654.

[73]

Hong, M.; Chen, Z. G.; Yang, L.; Chasapis, T. C.; Kang, S. D.; Zou, Y. C.; Auchterlonie, G. J.; Kanatzidis, M. G.; Snyder, G. J.; Zou, J. Enhancing the thermoelectric performance of SnSe1− x Te x nanoplates through band engineering. J. Mater. Chem. A 2017, 5, 10713–10721.

[74]

Kim, H. S.; Gibbs, Z. M.; Tang, Y. L.; Wang, H.; Snyder, G. J. Characterization of lorenz number with Seebeck coefficient measurement. APL Mater. 2015, 3, 041506.

[75]

Cahill, D. G.; Watson, S. K.; Pohl, R. O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 1992, 46, 6131–6140.

[76]

Zhang, Y. S.; Skoug, E.; Cain, J.; Ozoliņš, V.; Morelli, D.; Wolverton, C. First-principles description of anomalously low lattice thermal conductivity in thermoelectric Cu-Sb-Se ternary semiconductors. Phys. Rev. B 2012, 85, 054306.

Nano Research
Article number: 94907072
Cite this article:
Xiao S, Zhao M, Li M, et al. Band and defect engineering in solution-processed nanocrystal building blocks to promote transport properties in nanomaterials: The case of thermoelectric Cu3SbSe4. Nano Research, 2025, 18(1): 94907072. https://doi.org/10.26599/NR.2025.94907072
Topics:

674

Views

177

Downloads

1

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 02 September 2024
Revised: 29 September 2024
Accepted: 11 October 2024
Published: 25 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return