The development of cost-effective and high-performance thermoelectric (TE) materials faces significant challenges, particularly in improving the properties of promising copper-based TE materials such as Cu3SbSe4, which are limited by their poor electrical conductivity. This study presents a detailed comparative analysis of three strategies to promote the electrical transport properties of Cu3SbSe4 through Sn doping: conventional Sn atomic doping, surface treatment with SnSe molecular complexes, and blending with SnSe nanocrystals to form nanocomposites, all followed by annealing and hot pressing under identical conditions. Our results reveal that a surface treatment using SnSe molecular complexes significantly enhances TE performance over atomic doping and nanocomposite formation, achieving a power factor of 1.1 mW·m−1·K−2 and a maximum dimensionless figure of merit zT value of 0.80 at 640 K, representing an excellent performance among Cu3SbSe4-based materials produced via solution-processing methods. This work highlights the effectiveness of surface engineering in optimizing the transport properties of nanostructured materials, demonstrating the versatility and cost-efficiency of solution-based technologies in the development of advanced nanostructured materials for application in the field of TE among others.


BaTiO3 (BTO) ferroelectric films, which are renowned for their lead-free compositions, superior stability, and absence of a wake-up effect, are promising candidate materials in the field of non-volatile memories. However, the prerequisites for high-temperature conditions in the fabrication of ferroelectric thin films impose constraints on the substrate choice, which has limited the advancement in non-volatile memories based on single-crystal flexible BTO films with robust ferroelectric properties. Herein, a technique has been developed for the fabrication of flexible devices using a pulsed laser deposition system. BTO ferroelectric films have then been deposited onto a flexible mica substrate, with SrTiO3 (STO) serving as a buffer layer. The obtained flexible BTO devices exhibited excellent ferroelectricity, with a maximum polarization (2Pmax) of up to 42.58 μC/cm2 and a remnant polarization (2Pr) of up to 21.39 μC/cm2. Furthermore, even after 1000 bending cycles, the bipolar switching endurance remained high at 1012 cycles. After 104 s, the flexible BTO device still maintained excellent polarization characteristics. These results make the flexible BTO ferroelectric thin film a potential candidate for the next generation of non-volatile memories.