PDF (3.7 MB)
Collect
Submit Manuscript
Show Outline
Figures (4)

Research Article | Open Access

Pre-doped cations in V2O5 for high-performance Zn-ion batteries

Yinan Lu1Tianlei Wang2Nibagani Naresh1Joanna Borowiec2Ivan P. Parkin2()Buddha Deka Boruah1()
Institute for Materials Discovery, University College London, London WC1E 7JE, UK
Department of Chemistry, University College London, London WC1H 0AJ, UK
Show Author Information

Graphical Abstract

View original image Download original image
This study examines how pre-cation doping significantly impacts the capacity response of V2O5 cathode materials in Zn-ion batteries. It explores the effects of pre-doping with various cations (including Na+, K+, and NH4+) on enhancing overall charge storage performance.

Abstract

Aqueous rechargeable zinc-ion batteries (ZIBs) have garnered considerable attention due to their safety, cost-effectiveness, and eco-friendliness. There is a growing interest in finding suitable cathode materials for ZIBs. Layered vanadium oxide has emerged as a promising option due to its ability to store zinc ions with high capacity. However, the advancement of high-performance ZIBs encounters obstacles such as sluggish diffusion of zinc ions resulting from the high energy barrier between V2O5 layers, degradation of electrode structure over time and consequently lower capacity than the theoretical value. In this study, we investigated the pre-doping of different cations (including Na+, K+, and NH4+) into V2O5 to enhance the overall charge storage performance. Our findings indicate that the presence of V4+ enhances the charge storage performance, while the introduction of NH4+ into V2O5 (NH4-V2O5) not only increases the interlayer distance (d(001) = 15.99 Å), but also significantly increases the V4+/V5+ redox couple (atomic concentration ratio increased from 0.14 to 1.08), resulting in the highest electrochemical performance. The NH4-V2O5 cathode exhibited a high specific capacity (310.8 mAh·g–1 at 100 mA·g–1), improved cycling stability, and a significantly reduced charge transfer resistance (~ 17.9 Ω) compared to pristine V2O5 (112.5 mAh·g–1 at 0.1 A·g–1 and ~ 65.58 Ω charge transfer resistance). This study enhances our understanding and contributes to the development of high-capacity cathode materials, offering valuable insights for the design and optimization of cathode materials to enhance the electrochemical performance of ZIBs.

Electronic Supplementary Material

Download File(s)
0125_ESM.pdf (1.6 MB)

References

[1]

Mahmood, N.; Tang, T. Y.; Hou, Y. L. Nanostructured anode materials for lithium ion batteries: Progress, challenge and perspective. Adv. Energy Mater. 2016, 6, 1600374.

[2]

Passerini, S.; Scrosati, B. Lithium and lithium-ion batteries: Challenges and prospects. Electrochem. Soc. Interface 2016, 25, 85–87.

[3]

Huang, Q. K.; Ni, S. Y.; Jiao, M. L.; Zhong, X. W.; Zhou, G. M.; Cheng, H. M. Aligned carbon-based electrodes for fast-charging batteries: A review. Small 2021, 17, 2007676.

[4]

Diouf, B.; Pode, R. Potential of lithium-ion batteries in renewable energy. Renew. Energy 2015, 76, 375–380.

[5]

Chen, Q.; Jin, J. L.; Kou, Z. K.; Liao, C.; Liu, Z. A.; Zhou, L.; Wang, J.; Mai, L. Zn2+ pre-intercalation stabilizes the tunnel structure of MnO2 nanowires and enables zinc-ion hybrid supercapacitor of battery-level energy density. Small 2020, 16, 2000091.

[6]

Zhang, L. Y.; Chen, L.; Zhou, X. F.; Liu, Z. P. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: The zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 2015, 5, 1400930.

[7]

Chen, H. L.; Cheng, S. L.; Chen, D.; Jiang, Y.; Ang, E. H.; Liu, W. L.; Feng, Y. Z.; Rui, X. H.; Yu, Y. Vanadate-based electrodes for rechargeable batteries. Mater. Chem. Front. 2021, 5, 1585–1609.

[8]

Han, C. P.; Li, H. F.; Shi, R. Y.; Zhang, T. F.; Tong, J.; Li, J. Q.; Li, B. H. Organic quinones towards advanced electrochemical energy storage: Recent advances and challenges. J. Mater. Chem. A 2019, 7, 23378–23415.

[9]

Zhu, K. F.; Wei, S. Q.; Shou, H. W.; Shen, F. R.; Chen, S. M.; Zhang, P. J.; Wang, C. D.; Cao, Y. Y.; Guo, X.; Luo, M. et al. Defect engineering on V2O3 cathode for long-cycling aqueous zinc metal batteries. Nat. Commun. 2021, 12, 6878.

[10]

Deng, L. Q.; Niu, X. G.; Ma, G. S.; Yang, Z.; Zeng, L.; Zhu, Y. J.; Guo, L. Layered potassium vanadate K0.5V2O5 as a cathode material for nonaqueous potassium ion batteries. Adv. Funct. Mater. 2018, 28, 1800670.

[11]

Xu, X. M.; Duan, M. Y.; Yue, Y. F.; Li, Q.; Zhang, X.; Wu, L.; Wu, P. J.; Song, B.; Mai, L. Bilayered Mg0.25V2O5·H2O as a stable cathode for rechargeable Ca-ion batteries. ACS Energy Lett. 2019, 4, 1328–1335.

[12]

Zheng, J. Q.; Liu, C. F.; Tian, M.; Jia, X. X.; Jahrman, E. P.; Seidler, G. T.; Zhang, S. Q.; Liu, Y. Y.; Zhang, Y. F.; Meng, C. G. et al. Fast and reversible zinc ion intercalation in Al-ion modified hydrated vanadate. Nano Energy 2020, 70, 104519.

[13]

Boruah, B. D.; Wen, B.; De Volder, M. Light rechargeable lithium-ion batteries using V2O5 cathodes. Nano Lett. 2021, 21, 3527–3532.

[14]

Xu, L.; Zhang, Y.; Zheng, J.; Jiang, H.; Hu, T.; Meng, C. Ammonium ion intercalated hydrated vanadium pentoxide for advanced aqueous rechargeable Zn-ion batteries. Mater. Today Energy 2020, 18, 100509.

[15]

He, P.; Zhang, G. B.; Liao, X. B.; Yan, M. Y.; Xu, X.; An, Q. Y.; Liu, J.; Mai, L. Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 2018, 8, 1702463.

[16]

Wu, D. Z.; Zhuang, Y. C.; Wang, F.; Yang, Y.; Zeng, J.; Zhao, J. B. High-rate performance magnesium batteries achieved by direct growth of honeycomb-like V2O5 electrodes with rich oxygen vacancies. Nano Res. 2023, 16, 4880–4887.

[17]

Boruah, B. D.; Mathieson, A.; Wen, B.; Feldmann, S.; Dose, W. M.; De Volder, M. Photo-rechargeable zinc-ion batteries. Energy Environ. Sci. 2020, 13, 2414–2421.

[18]

Li, Y. K.; Huang, Z. M.; Kalambate, P. K.; Zhong, Y.; Huang, Z. M.; Xie, M. L.; Shen, Y.; Huang, Y. H. V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery. Nano Energy 2019, 60, 752–759.

[19]

Boruah, B. D.; Mathieson, A.; Park, S. K.; Zhang, X.; Wen, B.; Tan, L. F.; Boies, A.; De Volder, M. Vanadium dioxide cathodes for high-rate photo-rechargeable zinc-ion batteries. Adv. Energy Mater. 2021, 11, 2100115.

[20]

Boruah, B. D.; Wen, B.; De Volder, M. Molybdenum disulfide-zinc oxide photocathodes for photo-rechargeable zinc-ion batteries. ACS Nano 2021, 15, 16616–16624.

[21]

Liu, F.; Chen, Z. X.; Fang, G. Z.; Wang, Z. Q.; Cai, Y. S.; Tang, B. Y.; Zhou, J.; Liang, S. Q. V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nano-Micro Lett. 2019, 11, 25.

[22]

Chen, H. D.; Huang, J. J.; Tian, S. H.; Liu, L.; Qin, T. F.; Song, L.; Liu, Y. P.; Zhang, Y. N.; Wu, X. G.; Lei, S. L. et al. Interlayer modification of pseudocapacitive vanadium oxide and Zn(H2O) n 2+ migration regulation for ultrahigh rate and durable aqueous zinc-ion batteries. Adv. Sci. 2021, 8, 2004924.

[23]

Tian, M.; Liu, C. F.; Zheng, J. Q.; Jia, X. X.; Jahrman, E. P.; Seidler, G. T.; Long, D. H.; Atif, M.; Alsalhi, M.; Cao, G. Z. Structural engineering of hydrated vanadium oxide cathode by K+ incorporation for high-capacity and long-cycling aqueous zinc ion batteries. Energy Storage Mater. 2020, 29, 9–16.

Nano Research Energy
Article number: e9120125
Cite this article:
Lu Y, Wang T, Naresh N, et al. Pre-doped cations in V2O5 for high-performance Zn-ion batteries. Nano Research Energy, 2024, 3: e9120125. https://doi.org/10.26599/NRE.2024.9120125
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return