Publications
Sort:
Open Access Research Article Online First
Pre-doped cations in V2O5 for high-performance Zn-ion batteries
Nano Research Energy
Published: 30 May 2024
Abstract PDF (3.7 MB) Collect
Downloads:326

Aqueous rechargeable zinc-ion batteries (ZIBs) have garnered considerable attention due to their safety, cost-effectiveness, and eco-friendliness. There is a growing interest in finding suitable cathode materials for ZIBs. Layered vanadium oxide has emerged as a promising option due to its ability to store zinc ions with high capacity. However, the advancement of high-performance ZIBs encounters obstacles such as sluggish diffusion of zinc ions resulting from the high energy barrier between V2O5 layers, degradation of electrode structure over time and consequently lower capacity than the theoretical value. In this study, we investigated the pre-doping of different cations (including Na+, K+, and NH4+) into V2O5 to enhance the overall charge storage performance. Our findings indicate that the presence of V4+ enhances the charge storage performance, while the introduction of NH4+ into V2O5 (NH4-V2O5) not only increases the interlayer distance (d(001) = 15.99 Å), but also significantly increases the V4+/V5+ redox couple (atomic concentration ratio increased from 0.14 to 1.08), resulting in the highest electrochemical performance. The NH4-V2O5 cathode exhibited a high specific capacity (310.8 mAh·g–1 at 100 mA·g–1), improved cycling stability, and a significantly reduced charge transfer resistance (~ 17.9 Ω) compared to pristine V2O5 (112.5 mAh·g–1 at 0.1 A·g–1 and ~ 65.58 Ω charge transfer resistance). This study enhances our understanding and contributes to the development of high-capacity cathode materials, offering valuable insights for the design and optimization of cathode materials to enhance the electrochemical performance of ZIBs.

Total 1