Sort:
Open Access Research Article Online First
Pre-doped cations in V2O5 for high-performance Zn-ion batteries
Nano Research Energy
Published: 30 May 2024
Abstract PDF (3.7 MB) Collect
Downloads:326

Aqueous rechargeable zinc-ion batteries (ZIBs) have garnered considerable attention due to their safety, cost-effectiveness, and eco-friendliness. There is a growing interest in finding suitable cathode materials for ZIBs. Layered vanadium oxide has emerged as a promising option due to its ability to store zinc ions with high capacity. However, the advancement of high-performance ZIBs encounters obstacles such as sluggish diffusion of zinc ions resulting from the high energy barrier between V2O5 layers, degradation of electrode structure over time and consequently lower capacity than the theoretical value. In this study, we investigated the pre-doping of different cations (including Na+, K+, and NH4+) into V2O5 to enhance the overall charge storage performance. Our findings indicate that the presence of V4+ enhances the charge storage performance, while the introduction of NH4+ into V2O5 (NH4-V2O5) not only increases the interlayer distance (d(001) = 15.99 Å), but also significantly increases the V4+/V5+ redox couple (atomic concentration ratio increased from 0.14 to 1.08), resulting in the highest electrochemical performance. The NH4-V2O5 cathode exhibited a high specific capacity (310.8 mAh·g–1 at 100 mA·g–1), improved cycling stability, and a significantly reduced charge transfer resistance (~ 17.9 Ω) compared to pristine V2O5 (112.5 mAh·g–1 at 0.1 A·g–1 and ~ 65.58 Ω charge transfer resistance). This study enhances our understanding and contributes to the development of high-capacity cathode materials, offering valuable insights for the design and optimization of cathode materials to enhance the electrochemical performance of ZIBs.

Open Access Research Article Issue
Fe-Co-Ni ternary single-atom electrocatalyst and stable quasi-solid-electrolyte enabling high-efficiency zinc-air batteries
Nano Research Energy 2024, 3: e9120122
Published: 17 May 2024
Abstract PDF (27.5 MB) Collect
Downloads:717

The non-noble metal (Fe, Co, Ni, etc.) catalysts possess promising potential to replace noble metals (e.g., Pt, Ru, Ir, etc.) as catalysts for oxygen electrocatalysis. Up to now, various mono- and dual-single-atom catalysts have been fabricated, though it is still challenging to synthesise ternary single-atom catalysts due to the difference of interaction forces between different metal ions (Fe, Co, Ni, etc.) and ligands. Here, we report a Fe-Co-Ni ternary single-atom catalyst (FeCoNi-Nx) derived from a zeolitic imidazolate frameworks (ZIF) precursor as an efficient oxygen electrocatalyst, and an optimised flexible casting-drying polyvinyl alcohol (CD-PVA) film as a quasi-solid electrolyte host, for high-efficiency solid-state Zn-air batteries. The aberration-corrected HAADF-STEM and EELS spectrum confirm the co-existence of Fe, Co and Ni single atoms in the FeCoNi-Nx catalyst, and the electrochemical, mechanical, and durability tests prove the superiority of the CD-PVA film. As a result, the FeCoNi-Nx-based rechargeable Zn-air battery delivers superior specific capacity (846.8 mAh·gZn–1) and power density (135 mW·cm–2) in aqueous electrolyte, as well as an over 60 mW·cm–2 power density in quasi-solid electrolyte. As a result, the quasi-solid-state Zn-air battery with a small area of only 2 cm2 is able to charge a mobile phone, which outperforms all the reported devices to date.

Total 2