Abstract
Cooperative driving is widely viewed as a promising method to better utilize limited road resources and alleviate traffic congestion. In recent years, several cooperative driving approaches for idealized traffic scenarios (i.e., uniform vehicle arrivals, lengths, and speeds) have been proposed. However, theoretical analyses and comparisons of these approaches are lacking. In this study, we propose a unified group-by-group zipper-style movement model to describe different approaches synthetically and evaluate their performance. We derive the maximum throughput for cooperative driving plans of idealized unsignalized intersections and discuss how to minimize the delay of vehicles. The obtained conclusions shed light on future cooperative driving studies.