Cooperative driving is widely viewed as a promising method to better utilize limited road resources and alleviate traffic congestion. In recent years, several cooperative driving approaches for idealized traffic scenarios (i.e., uniform vehicle arrivals, lengths, and speeds) have been proposed. However, theoretical analyses and comparisons of these approaches are lacking. In this study, we propose a unified group-by-group zipper-style movement model to describe different approaches synthetically and evaluate their performance. We derive the maximum throughput for cooperative driving plans of idealized unsignalized intersections and discuss how to minimize the delay of vehicles. The obtained conclusions shed light on future cooperative driving studies.
- Article type
- Year
- Co-author
Cyber-Physical System (CPS) and Cyber-Physical-Social System (CPSS) computing are now challenging existing research in many realms, including Intelligent Transportation Systems (ITS). In this survey, we highlight some advances in the coevolution of CPS, CPSS, and ITS, with an emphasis on traffic data. We first explain the hierarchical architecture of CPS-ITS in terms of five layers: perception, communication, computing, control, and application. Then, we analyze the characteristics of traffic data in CPS-ITS, and enumerate some new technologies for data operation and management. Two typical cases of CPS-ITS, vehicular-communication-based traffic control systems and smart parking systems, are illustrated to describe how CPS is changing our lives and influencing the development of future ITS.