Inferring the functionality of an object from a single RGBD image is difficult for two reasons: lack of semantic information about the object, and missing data due to occlusion. In this paper, we present an interactive framework to recover a 3D functional prototype from a single RGBD image. Instead of precisely reconstructing the object geometry for the prototype, we mainly focus on recovering the object’s functionality along with its geometry. Our system allows users to scribble on the image to create initial rough proxies for the parts. After user annotation of high-level relations between parts, our system automatically jointly optimizes detailed joint parameters (axis and position) and part geometry parameters (size, orientation, and position). Such prototype recovery enables a better understanding of the underlying image geometry and allows for further physically plausible manipulation. We demonstrate our framework on various indoor objects with simple or hybrid functions.
- Article type
- Year
- Co-author
In this paper, we present a framework allowing users to interact with geometrically complex 3D deformable objects using (multiple) haptic devices based on an extended shape matching approach. There are two major challenges for haptic-enabled interaction using the shape matching method. The first is how to obtain a rapid deformation propagation when a large number of shape matching clusters exist. The second is how to robustly handle the collision response when the haptic interaction point hits the particle-sampled deformable volume. Our framework extends existing multi-resolution shape matching methods, providing an improved energy convergence rate. This is achieved by using adaptive integration strategies to avoid insignificant shape matching iterations during the simulation. Furthermore, we present a new mechanism called stable constraint particle coupling which ensures consistent deformable behavior during haptic interaction. As demonstrated in our experimental results, the proposed method provides natural and smooth haptic rendering as well as efficient yet stable deformable simulation of complex models in real time.