Sort:
Open Access Research Article Issue
Shell stand: Stable thin shell models for 3D fabrication
Computational Visual Media 2024, 10(4): 643-657
Published: 24 June 2024
Abstract PDF (5.4 MB) Collect
Downloads:1

A thin shell model refers to a surface or structure, where the object's thickness is considered negligible. In the context of 3D printing, thin shell models are characterized by having lightweight, hollow structures, and reduced material usage. Their versatility and visual appeal make them popular in various fields, such as cloth simulation, character skinning, and for thin-walled structures like leaves, paper, or metal sheets. Nevertheless, optimization of thin shell models without external support remains a challenge due to their minimal interior operational space. For the same reasons, hollowing methods are also unsuitable for this task. In fact, thin shell modulation methods are required to preserve the visual appearance of a two-sided surface which further constrain the problem space. In this paper, we introduce a new visual disparity metric tailored for shell models, integrating local details and global shape attributes in terms of visual perception. Our method modulates thin shell models using global deformations and local thickening while accounting for visual saliency, stability, and structural integrity. Thereby, thin shell models such as bas-reliefs, hollow shapes, and cloth can be stabilized to stand in arbitrary orientations, making them ideal for 3D printing.

Open Access Research Article Issue
Poisson disk sampling through disk packing
Computational Visual Media 2015, 1(1): 17-26
Published: 08 August 2015
Abstract PDF (72.8 MB) Collect
Downloads:48

Poisson disk sampling is an important problem in computer graphics and has a wide variety of applications in imaging, geometry, rendering, etc. In this paper, we propose a novel Poisson disk sampling algorithm based on disk packing. The key idea uses the observation that a relatively dense disk packing layout naturally satisfies the Poisson disk distribution property that each point is no closer to the others than a specified minimum distance, i.e., the Poisson disk radius. We use this property to propose a relaxation algorithm that achieves a good balance between the random and uniform properties needed for Poisson disk distributions. Our algorithm is easily adapted to image stippling by extending identical disk packing to unequal disks. Experimental results demonstrate the efficacy of our approaches.

Total 2