Sort:
Open Access Issue
New Advanced Computing Architecture for Cryptography Design and Analysis by D-Wave Quantum Annealer
Tsinghua Science and Technology 2022, 27(4): 751-759
Published: 09 December 2021
Abstract PDF (826.3 KB) Collect
Downloads:124

Universal quantum computers are far from achieving practical applications. The D-Wave quantum computer is initially designed for combinatorial optimizations. Therefore, exploring the potential applications of the D-Wave device in the field of cryptography is of great importance. First, although we optimize the general quantum Hamiltonian on the basis of the structure of the multiplication table (factor up to 1 005 973), this study attempts to explore the simplification of Hamiltonian derived from the binary structure of the integers to be factored. A simple factorization on 143 with four qubits is provided to verify the potential of further advancing the integer-factoring ability of the D-Wave device. Second, by using the quantum computing cryptography based on the D-Wave 2000Q system, this research further constructs a simple version of quantum-classical computing architecture and a Quantum-Inspired Simulated Annealing (QISA) framework. Good functions and a high-performance platform are introduced, and additional balanced Boolean functions with high nonlinearity and optimal algebraic immunity can be found. Further comparison between QISA and Quantum Annealing (QA) on six-variable bent functions not only shows the potential speedup of QA, but also suggests the potential of architecture to be a scalable way of D-Wave annealer toward a practical cryptography design.

Open Access Issue
A Generic TC-Based Method to Find the Weakness in Different Phases of Masking Schemes
Tsinghua Science and Technology 2018, 23(5): 574-585
Published: 17 September 2018
Abstract PDF (2.6 MB) Collect
Downloads:17

Masking is one of the most commonly used Side-Channel Attack (SCA) countermeasures and is built on a security framework, such as the ISW framework, and ensures theoretical security through secret sharing. Unfortunately, the theoretical security cannot guarantee practical security, because several possible weaknesses may exist in the actual implementation. These weaknesses likely come from the masking schemes or are introduced by the implementation methods. Finding the possible weakness of the masking scheme is an interesting and important issue for real applications. In this paper, the possible weaknesses for masking schemes in Field-Programmable Gate Array (FPGA) design are discussed. It was found that the combinational circuit is the key to the security of masking schemes. The Toggle Count (TC) method and its extension are utilized to evaluate the security of masking schemes in the design phase and the implementation phase separately. Comparing different logic-level simulators for the Xilinx FPGA platform, the behavioral and post-translate simulations are considered as the analysis method in the design phase, while the post-map and the post-route simulations are used to find the weakness during the implementation phase. Moreover, a Standard Delay Format (SDF) based improvement scheme is proposed to significantly increase the effectiveness of the TC model.

Open Access Issue
New Public-Key Cryptosystem Based on the Morphism of Polynomials Problem
Tsinghua Science and Technology 2016, 21(3): 302-311
Published: 13 June 2016
Abstract PDF (506.5 KB) Collect
Downloads:18

During the last two decades, there has been intensive and fast development in Multivariate Public Key Cryptography (MPKC), which is considered to be an important candidate for post-quantum cryptography. However, it is universally regarded as a difficult task, as in the Knapsack cryptosystems, to design a secure MPKC scheme (especially an encryption scheme) employing the existing trapdoor construction. In this paper, we propose a new key-exchange scheme and an MPKC scheme based on the Morphism of Polynomials (MP) problem. The security of the proposed schemes is provably reducible to the conjectured intractability of a new difficult problem, namely the Decisional Multivariate Diffie-Hellman (DMDH) problem derived from the MP problem. The proposed key agreement is one of several non-number-theory-based protocols, and is a candidate for use in the post-quantum era. More importantly, by slightly modifying the protocol, we offer an original approach to designing a secure MPKC scheme. Furthermore, the proposed encryption scheme achieves a good tradeoff between security and efficiency, and seems competitive with traditional MPKC schemes.

Open Access Issue
Cryptanalysis of Public Key Cryptosystems Based on Non-Abelian Factorization Problems
Tsinghua Science and Technology 2016, 21(3): 344-351
Published: 13 June 2016
Abstract PDF (439.9 KB) Collect
Downloads:43

Advances in quantum computers threaten to break public-key cryptosystems (e.g., RSA, ECC, and EIGamal), based on the hardness of factoring or taking a discrete logarithm. However, no quantum algorithms have yet been found for solving certain mathematical problems in non-commutative algebraic structures. Recently, two novel public-key encryption schemes, BKT-B cryptosystem and BKT-FO cryptosystem, based on factorization problems have been proposed at Security and Communication Networks in 2013. In this paper we show that these two schemes are vulnerable to structural attacks and linearization equations attacks, and that they only require polynomial time complexity to obtain messages from associated public keys. We conduct a detailed analysis of the two attack methods and show corresponding algorithmic descriptions and efficiency analyses. In addition, we provide some improvement suggestions for the two public-key encryption schemes.

Total 4