Sort:
Open Access Issue
Side-Channel Attacks in a Real Scenario
Tsinghua Science and Technology 2018, 23(5): 586-598
Published: 17 September 2018
Abstract PDF (3.4 MB) Collect
Downloads:32

Existing Side-Channel Attacks (SCAs) have several limitations and, rather than to be real attack methods, can only be considered to be security evaluation methods. Their limitations are mainly related to the sampling conditions, such as the trigger signal embedded in the source code of the encryption device, and the acquisition device that serves as the encryption-device controller. Apart from it being very difficult for an attacker to add a trigger into the original design before making an attack or to control the encryption device, there is a big gap in the capacity of existing SCAs to pose real threats to cipher devices. In this paper, we propose a new method, the sliding window SCA (SW-SCA), which can be applied in scenarios in which the acquisition device is independent of the encryption device and for which the encryption source code requires no trigger signal or modification. First, we describe the main issues in existing SCAs, then we theoretically analyze the effectiveness and complexity of our proposed SW-SCA —a method that can incorporate a sliding-window mechanism into almost all of the existing non-profiled SCAs. The experimental results for both simulated and physical traces verify the effectiveness of the SW-SCA and the appropriateness of its theoretical complexity.

Open Access Issue
A Generic TC-Based Method to Find the Weakness in Different Phases of Masking Schemes
Tsinghua Science and Technology 2018, 23(5): 574-585
Published: 17 September 2018
Abstract PDF (2.6 MB) Collect
Downloads:17

Masking is one of the most commonly used Side-Channel Attack (SCA) countermeasures and is built on a security framework, such as the ISW framework, and ensures theoretical security through secret sharing. Unfortunately, the theoretical security cannot guarantee practical security, because several possible weaknesses may exist in the actual implementation. These weaknesses likely come from the masking schemes or are introduced by the implementation methods. Finding the possible weakness of the masking scheme is an interesting and important issue for real applications. In this paper, the possible weaknesses for masking schemes in Field-Programmable Gate Array (FPGA) design are discussed. It was found that the combinational circuit is the key to the security of masking schemes. The Toggle Count (TC) method and its extension are utilized to evaluate the security of masking schemes in the design phase and the implementation phase separately. Comparing different logic-level simulators for the Xilinx FPGA platform, the behavioral and post-translate simulations are considered as the analysis method in the design phase, while the post-map and the post-route simulations are used to find the weakness during the implementation phase. Moreover, a Standard Delay Format (SDF) based improvement scheme is proposed to significantly increase the effectiveness of the TC model.

Total 2