The rapid development of fifth-/sixth-generation telecommunication technologies has increased the demand for silicate ceramic materials with low permittivity and low dielectric loss. However, few silicate ceramics with ultrahigh Q×f values (≥ 200,000 GHz) have been developed to date. In this study, a slight substitution of Ge4+ ions in MgSi1−xGexO3 (MSGx, x = 0 to 0.6) ceramics caused a phase transition from clinoenstatite (x = 0) to orthoenstatite (x = 0.2), and the Q×f value increased from 70,600 GHz to 148,800 GHz. Following the phase transition, the cations change from a “compressed” state to a “rattle” state, and the lattice distortion continues to rise with x, resulting in the optimal microwave dielectric properties (εr = 7.21, Q×f = 259,300 GHz) of the MgSi0.5Ge0.5O3 ceramics. Significant discrepancies in the dielectric properties are found in the microwave and terahertz bands. There is an anomalous increase in εr and a decrease in the Q×f value in the terahertz band, which is due to the change in polar phonon modes revealed by the terahertz time-domain spectra. Consequently, MgSi0.7Ge0.3O3 ceramics display superior dielectric properties, with εr = 7.02, Q×f = 191,300 GHz in the terahertz band. These novel materials have the potential to serve as promising dielectric materials for future microwave or terahertz mobile communication systems.


Low-loss tungsten-bronze microwave dielectric ceramics are dielectric materials with potential application value for miniaturized dielectric filters and antennas in the fifth-generation (5G) communication technology. In this work, a novel Al/Nd co-doping method of Ba4Nd9.33Ti18O54 (BNT) ceramics with a chemical formula of Ba4Nd9.33+z/3Ti18-zAlzO54 (BNT-AN, 0 ≤ z ≤ 2) was proposed to improve the dielectric properties through structural and defect modulation. Together with Al-doped ceramics (Ba4Nd9.33Ti18-zAl4z/3O54, BNT-A, 0 ≤ z ≤ 2) for comparison, the ceramics were prepared by a solid state method. It is found that Al/Nd co-doping method has a significant effect on improving the dielectric properties compared with Al doping. As the doping amount z increased, the relative dielectric constant (εr) and the temperature coefficient of resonant frequency (τf) of the ceramics decreased, and the Q×f values of the ceramics obviously increased when z ≤ 1.5. Excellent microwave dielectric properties of εr = 72.2, Q×f = 16,480 GHz, and τf = +14.3 ppm/℃ were achieved in BNT-AN ceramics with z = 1.25. Raman spectroscopy and thermally stimulated depolarization current (TSDC) technique were firstly combined to analyze the structures and defects in microwave dielectric ceramics. It is shown that the improvement on Q×f values was originated from the decrease in the strength of the A-site cation vibration and the concentration of oxygen vacancies (

Polymer–ceramic composites were prepared by twin screw melt extrusion with high-density polyethylene (HDPE) as the matrix and polystyrene-coated BaO–Nd2O3–TiO2 (BNT) ceramics as the filling material. Interestingly, the incorporation of polystyrene (PS) by the coating route could significantly improve the thermal behaviors of the composites (HDPE–PS/BNT), besides the temperature stability of dielectric properties and thermal displacement. The microwave dielectric properties of the composites were investigated systematically. The results indicated that, as the volume fraction of BNT ceramic particles increased from 10 to 50 vol% in the composites, the dielectric constant increased from 3.54 (9.23 GHz) to 13.14 (7.20 GHz), which can be beneficial for the miniaturization of microwave devices; the dielectric loss tangent was relatively low (0.0003– 0.0012); more importantly, the ratio of PS to HDPE increased accordingly, making the composite containing 50 vol% BNT ceramics have a low value of temperature coefficient of resonant frequency (