The rapid development of fifth-/sixth-generation telecommunication technologies has increased the demand for silicate ceramic materials with low permittivity and low dielectric loss. However, few silicate ceramics with ultrahigh Q×f values (≥ 200,000 GHz) have been developed to date. In this study, a slight substitution of Ge4+ ions in MgSi1−xGexO3 (MSGx, x = 0 to 0.6) ceramics caused a phase transition from clinoenstatite (x = 0) to orthoenstatite (x = 0.2), and the Q×f value increased from 70,600 GHz to 148,800 GHz. Following the phase transition, the cations change from a “compressed” state to a “rattle” state, and the lattice distortion continues to rise with x, resulting in the optimal microwave dielectric properties (εr = 7.21, Q×f = 259,300 GHz) of the MgSi0.5Ge0.5O3 ceramics. Significant discrepancies in the dielectric properties are found in the microwave and terahertz bands. There is an anomalous increase in εr and a decrease in the Q×f value in the terahertz band, which is due to the change in polar phonon modes revealed by the terahertz time-domain spectra. Consequently, MgSi0.7Ge0.3O3 ceramics display superior dielectric properties, with εr = 7.02, Q×f = 191,300 GHz in the terahertz band. These novel materials have the potential to serve as promising dielectric materials for future microwave or terahertz mobile communication systems.
Publications
Article type
Year

Journal of Advanced Ceramics
Published: 05 March 2025
Downloads:52