We present a facile and versatile method for introducing various non-precious metal nanoparticles (NPs) in small nanotubes, such as single-walled carbon nanotubes (SWNTs), including 3d-metals (V, Mn, Fe and Co), 4d-metals (Mo), and 5d-metals (W). This is realized by oxidizing encapsulated cycloalkene metal carbonyl complexes below their sublimation temperatures. This novel technique is significant because it avoids the diffusion and deposition of metal species on the outer walls of nanotubes, which has been challenging to achieve using the conventional filling methods. High-resolution transmission electron microscopy (HRTEM), high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), energy-dispersive X-ray spectroscopy (EDX), Raman, and X-ray photoelectron spectroscopy (XPS) analyses revealed high filling efficiencies (> 95% SWNTs filled with metal NPs). This method also provides a unique approach to fabricate highly dispersed and uniform SWNT–metal nanoparticle encapsulates with lower valence states, which are often not stable in the bulk.
- Article type
- Year
- Co-author
Understanding the properties and behavior of water molecules in restricted geometries, such as the nanopores of rocks, is of interest for shale gas exploitation. We present herein ex situ and in situ nuclear magnetic resonance (NMR) studies on the effects of water on the adsorption and diffusion of methane in nanopores. Silica materials with one-dimensional pores of ZSM-22, MCM-41, and SBA-15, with pore sizes ranging from 0.5 to 6 nm, were chosen as models. Hyperpolarized (HP) 129Xe NMR results show that water adsorption does not affect the pore sizes of ZSM-22 and MCM-41 but reduces that of SBA-15. The presence of water suppresses methane adsorption; this suppression effect is stronger in smaller pores. The self-diffusion coefficients of methane within ZSM-22 and MCM-41 are not significantly influenced by the presence of water, as measured by 1H pulsed field gradient (PFG) NMR. However, within SBA-15, which has a pore size of 6 nm, the diffusion coefficient of methane increases as the amount of water adsorption increases, peaks, and then decreases to a constant value with further water adsorption. These experiments reveal the effects of the pore size and the presence of water on methane adsorption and diffusion in constrained spaces, which could have important implications for flow simulations of methane in shales.