Sort:
Open Access Article Issue
Q-Learning-Assisted Meta-Heuristics for Scheduling Distributed Hybrid Flow Shop Problems
Computers, Materials & Continua 2024, 80(3): 3573-3589
Published: 12 September 2024
Abstract PDF (886.3 KB) Collect
Downloads:3

The flow shop scheduling problem is important for the manufacturing industry. Effective flow shop scheduling can bring great benefits to the industry. However, there are few types of research on Distributed Hybrid Flow Shop Problems (DHFSP) by learning assisted meta-heuristics. This work addresses a DHFSP with minimizing the maximum completion time (Makespan). First, a mathematical model is developed for the concerned DHFSP. Second, four Q-learning-assisted meta-heuristics, e.g., genetic algorithm (GA), artificial bee colony algorithm (ABC), particle swarm optimization (PSO), and differential evolution (DE), are proposed. According to the nature of DHFSP, six local search operations are designed for finding high-quality solutions in local space. Instead of random selection, Q-learning assists meta-heuristics in choosing the appropriate local search operations during iterations. Finally, based on 60 cases, comprehensive numerical experiments are conducted to assess the effectiveness of the proposed algorithms. The experimental results and discussions prove that using Q-learning to select appropriate local search operations is more effective than the random strategy. To verify the competitiveness of the Q-learning assistedmeta-heuristics, they are compared with the improved iterated greedy algorithm (IIG), which is also for solving DHFSP. The Friedman test is executed on the results by five algorithms. It is concluded that the performance of four Q-learning-assisted meta-heuristics are better than IIG, and the Q-learning-assisted PSO shows the best competitiveness.

Open Access Issue
Distributed Scheduling Problems in Intelligent Manufacturing Systems
Tsinghua Science and Technology 2021, 26(5): 625-645
Published: 20 April 2021
Abstract PDF (631.5 KB) Collect
Downloads:149

Currently, manufacturing enterprises face increasingly fierce market competition due to the various demands of customers and the rapid development of economic globalization. Hence, they have to extend their production mode into distributed environments and establish multiple factories in various geographical locations. Nowadays, distributed manufacturing systems have been widely adopted in industrial production processes. In recent years, many studies have been done on the modeling and optimization of distributed scheduling problems. This work provides a literature review on distributed scheduling problems in intelligent manufacturing systems. By summarizing and evaluating existing studies on distributed scheduling problems, we analyze the achievements and current research status in this field and discuss ongoing studies. Insights regarding prior works are discussed to uncover future research directions, particularly swarm intelligence and evolutionary algorithms, which are used for managing distributed scheduling problems in manufacturing systems. This work focuses on journal papers discovered using Google Scholar. After reviewing the papers, in this work, we discuss the research trends of distributed scheduling problems and point out some directions for future studies.

Total 2