Large scale synthesis of high-efficiency bifunctional electrocatalyst based on cost-effective and earth-abundant transition metal for overall water splitting in the alkaline environment is indispensable for renewable energy conversion. In this regard, meticulous design of active sites and probing their catalytic mechanism on both cathode and anode with different reaction environment at molecular- scale are vitally necessary. Herein, a coordination environment inheriting strategy is presented for designing low-coordination Ni2+ octahedra (L-Ni-8) atomic interface at a high concentration (4.6 at.%). Advanced spectroscopic techniques and theoretical calculations reveal that the self-matching electron delocalization and localization state at L-Ni-8 atomic interface enable an ideal reaction environment at both cathode and anode. To improve the efficiency of using the self-modification reaction environment at L-Ni-8, all of the structural features, including high atom economy, mass transfer, and electron transfer, are integrated together from atomic-scale to macro-scale. At high current density of 500 mA/cm2, the samples synthesized at gram-scale can deliver low hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) overpotentials of 262 and 348 mV, respectively.
- Article type
- Year
- Co-author
The incorporation of small guest molecules or ions by bottom-up hydrothermal synthesis has recently emerged as a promising new way to engineer 1T-phase MoS2 with high hydrogen evolution reaction (HER) activity. However, the mechanism of the associated structural evolution remains elusive and controversial, leading to a lack of effective routes to prepare 1T-phase MoS2 with controlled structure and morphology, along with high purity and stability. Herein, urea is chosen as precursor of small molecules or ions to simultaneously engineer the phase (~16.4%, ~69.4%, and ~90.2% of 1T phase) and size (~98.8, ~151.6, and ~251.8 nm for the 90.2% 1T phase) of MoS2 nanosheets, which represent an ideal model system for investigating the structural evolution in these materials, as well as developing a new type of 1T-phase MoS2 arrays. Using reaction intermediate monitoring and theoretical calculations, we show that the oriented growth of 1T-phase MoS2 is controlled by ammonia-assisted assembly, recrystallization, and stabilization processes. A superior HER performance in acidic media is obtained, with an overpotential of only 76 mV required to achieve a stable current density of 10 mA·cm–2 for 15 h. This excellent performance is attributed to the unique array structure, involving well-dispersed, edge-terminated, and high-purity 1T-phase MoS2 nanosheets.