Publications
Sort:
Research Article Issue
Extreme biomimetic approach for developing novel chitin-GeO2 nanocomposites with photoluminescent properties
Nano Research 2015, 8(7): 2288-2301
Published: 13 May 2015
Abstract PDF (3.3 MB) Collect
Downloads:12

This work presents an extreme biomimetics route for the creation of nanostructured biocomposites utilizing a chitinous template of poriferan origin. The specific thermal stability of the nanostructured chitinous template allowed for the formation under hydrothermal conditions of a novel germanium oxide-chitin composite with a defined nanoscale structure. Using a variety of analytical techniques (FTIR, Raman, energy dispersive X-ray (EDX), near-edge X-ray absorption fine structure (NEXAFS), and photoluminescence (PL) spectroscopy, EDS-mapping, selected area for the electron diffraction pattern (SAEDP), and transmission electron microscopy (TEM)), we showed that this bioorganic scaffold induces the growth of GeO2 nanocrystals with a narrow (150–300 nm) size distribution and predominantly hexagonal phase, demonstrating the chitin template's control over the crystal morphology. The formed GeO2–chitin composite showed several specific physical properties, such as a striking enhancement in photoluminescence exceeding values previously reported in GeO2-based biomaterials. These data demonstrate the potential of extreme biomimetics for developing new-generation nanostructured materials.

Total 1
1/11GOpage