Sort:
Open Access Review Article Issue
Inversion-free geometric mapping construction: A survey
Computational Visual Media 2021, 7(3): 289-318
Published: 27 July 2021
Abstract PDF (6.4 MB) Collect
Downloads:34

A geometric mapping establishes a correspondence between two domains. Since no real object has zero or negative volume, such a mapping is required to be inversion-free. Computing inversion-free mappings is a fundamental task in numerous computer graphics and geometric processing applications, such as deformation, texture mapping, mesh generation, and others. This task is usually formulated as a non-convex, nonlinear, constrained optimization problem. Various methods have been developed to solve this optimization problem. As well as being inversion-free, different applications have various further requirements. We expand the discussion in two directions to (i) problems imposing specific constraints and (ii) combinatorial problems. This report provides a systematic overview of inversion-free mapping construction, a detailed discussion of the construction methods, including their strengths and weaknesses, and a description of open problems in this research field.

Survey Issue
A Revisit of Shape Editing Techniques: From the Geometric to the Neural Viewpoint
Journal of Computer Science and Technology 2021, 36(3): 520-554
Published: 05 May 2021
Abstract Collect

3D shape editing is widely used in a range of applications such as movie production, computer games and computer aided design. It is also a popular research topic in computer graphics and computer vision. In past decades, researchers have developed a series of editing methods to make the editing process faster, more robust, and more reliable. Traditionally, the deformed shape is determined by the optimal transformation and weights for an energy formulation. With increasing availability of 3D shapes on the Internet, data-driven methods were proposed to improve the editing results. More recently as the deep neural networks became popular, many deep learning based editing methods have been developed in this field, which are naturally data-driven. We mainly survey recent research studies from the geometric viewpoint to those emerging neural deformation techniques and categorize them into organic shape editing methods and man-made model editing methods. Both traditional methods and recent neural network based methods are reviewed.

Total 2