Sort:
Open Access Issue
A Novel Recommendation Algorithm Integrates Resource Allocation and Resource Transfer in Weighted Bipartite Network
Big Data Mining and Analytics 2024, 7(2): 357-370
Published: 22 April 2024
Abstract PDF (2.6 MB) Collect
Downloads:63

Grid-based recommendation algorithms view users and items as abstract nodes, and the information utilised by the algorithm is hidden in the selection relationships between users and items. Although these relationships can be easily handled, much useful information is overlooked, resulting in a less accurate recommendation algorithm. The aim of this paper is to propose improvements on the standard substance diffusion algorithm, taking into account the influence of the user’s rating on the recommended item, adding a moderating factor, and optimising the initial resource allocation vector and resource transfer matrix in the recommendation algorithm. An average ranking score evaluation index is introduced to quantify user satisfaction with the recommendation results. Experiments are conducted on the MovieLens training dataset, and the experimental results show that the proposed algorithm outperforms classical collaborative filtering systems and network structure based recommendation systems in terms of recommendation accuracy and hit rate.

Open Access Issue
Data Temperature Informed Streaming for Optimising Large-Scale Multi-Tiered Storage
Big Data Mining and Analytics 2024, 7(2): 371-398
Published: 22 April 2024
Abstract PDF (8.2 MB) Collect
Downloads:30

Data temperature is a response to the ever-growing amount of data. These data have to be stored, but they have been observed that only a small portion of the data are accessed more frequently at any one time. This leads to the concept of hot and cold data. Cold data can be migrated away from high-performance nodes to free up performance for higher priority data. Existing studies classify hot and cold data primarily on the basis of data age and usage frequency. We present this as a limitation in the current implementation of data temperature. This is due to the fact that age automatically assumes that all new data have priority and that usage is purely reactive. We propose new variables and conditions that influence smarter decision-making on what are hot or cold data and allow greater user control over data location and their movement. We identify new metadata variables and user-defined variables to extend the current data temperature value. We further establish rules and conditions for limiting unnecessary movement of the data, which helps to prevent wasted input output (I/O) costs. We also propose a hybrid algorithm that combines existing variables and new variables and conditions into a single data temperature. The proposed system provides higher accuracy, increases performance, and gives greater user control for optimal positioning of data within multi-tiered storage solutions.

Open Access Issue
A Survey on Event Tracking in Social Media Data Streams
Big Data Mining and Analytics 2024, 7(1): 217-243
Published: 25 December 2023
Abstract PDF (2 MB) Collect
Downloads:105

Social networks are inevitable parts of our daily life, where an unprecedented amount of complex data corresponding to a diverse range of applications are generated. As such, it is imperative to conduct research on social events and patterns from the perspectives of conventional sociology to optimize services that originate from social networks. Event tracking in social networks finds various applications, such as network security and societal governance, which involves analyzing data generated by user groups on social networks in real time. Moreover, as deep learning techniques continue to advance and make important breakthroughs in various fields, researchers are using this technology to progressively optimize the effectiveness of Event Detection (ED) and tracking algorithms. In this regard, this paper presents an in-depth comprehensive review of the concept and methods involved in ED and tracking in social networks. We introduce mainstream event tracking methods, which involve three primary technical steps: ED, event propagation, and event evolution. Finally, we introduce benchmark datasets and evaluation metrics for ED and tracking, which allow comparative analysis on the performance of mainstream methods. Finally, we present a comprehensive analysis of the main research findings and existing limitations in this field, as well as future research prospects and challenges.

Open Access Issue
A Novel Influence Maximization Algorithm for a Competitive Environment Based on Social Media Data Analytics
Big Data Mining and Analytics 2022, 5(2): 130-139
Published: 25 January 2022
Abstract PDF (5.2 MB) Collect
Downloads:939

Online social networks are increasingly connecting people around the world. Influence maximization is a key area of research in online social networks, which identifies influential users during information dissemination. Most of the existing influence maximization methods only consider the transmission of a single channel, but real-world networks mostly include multiple channels of information transmission with competitive relationships. The problem of influence maximization in an environment involves selecting the seed node set for certain competitive information, so that it can avoid the influence of other information, and ultimately affect the largest set of nodes in the network. In this paper, the influence calculation of nodes is achieved according to the local community discovery algorithm, which is based on community dispersion and the characteristics of dynamic community structure. Furthermore, considering two various competitive information dissemination cases as an example, a solution is designed for self-interested information based on the assumption that the seed node set of competitive information is known, and a novel influence maximization algorithm of node avoidance based on user interest is proposed. Experiments conducted based on real-world Twitter dataset demonstrates the efficiency of our proposed algorithm in terms of accuracy and time against notable influence maximization algorithms.

Total 4