Data temperature is a response to the ever-growing amount of data. These data have to be stored, but they have been observed that only a small portion of the data are accessed more frequently at any one time. This leads to the concept of hot and cold data. Cold data can be migrated away from high-performance nodes to free up performance for higher priority data. Existing studies classify hot and cold data primarily on the basis of data age and usage frequency. We present this as a limitation in the current implementation of data temperature. This is due to the fact that age automatically assumes that all new data have priority and that usage is purely reactive. We propose new variables and conditions that influence smarter decision-making on what are hot or cold data and allow greater user control over data location and their movement. We identify new metadata variables and user-defined variables to extend the current data temperature value. We further establish rules and conditions for limiting unnecessary movement of the data, which helps to prevent wasted input output (I/O) costs. We also propose a hybrid algorithm that combines existing variables and new variables and conditions into a single data temperature. The proposed system provides higher accuracy, increases performance, and gives greater user control for optimal positioning of data within multi-tiered storage solutions.
- Article type
- Year
- Co-author
Social networks are inevitable parts of our daily life, where an unprecedented amount of complex data corresponding to a diverse range of applications are generated. As such, it is imperative to conduct research on social events and patterns from the perspectives of conventional sociology to optimize services that originate from social networks. Event tracking in social networks finds various applications, such as network security and societal governance, which involves analyzing data generated by user groups on social networks in real time. Moreover, as deep learning techniques continue to advance and make important breakthroughs in various fields, researchers are using this technology to progressively optimize the effectiveness of Event Detection (ED) and tracking algorithms. In this regard, this paper presents an in-depth comprehensive review of the concept and methods involved in ED and tracking in social networks. We introduce mainstream event tracking methods, which involve three primary technical steps: ED, event propagation, and event evolution. Finally, we introduce benchmark datasets and evaluation metrics for ED and tracking, which allow comparative analysis on the performance of mainstream methods. Finally, we present a comprehensive analysis of the main research findings and existing limitations in this field, as well as future research prospects and challenges.