Accurate estimated ultimate recovery prediction of fractured horizontal wells in tight reservoirs is crucial to economic evaluation and oil field development plan formulation. Advances in artificial intelligence and big data have provided a new tool for rapid production prediction of unconventional reservoirs. In this study, the estimated ultimate recovery prediction model based on deep neural networks was established using the data of 58 horizontal wells in Mahu tight oil reservoirs. First, the estimated ultimate recovery of oil wells was calculated based on the stretched exponential production decline model and a five-region flow model. Then, the calculated estimated ultimate recovery, geological attributes, engineering parameters, and production data of each well were used to build a machine learning database. Before the model training, the number of input parameters was reduced from 14 to 9 by feature selection. The prediction accuracy of the model was improved by data normalization, the early stopping technique, and 10-fold cross validation. The optimal activation function, hidden layers, number of neurons in each layer, and learning rate of the deep neural network model were obtained through hyperparameter optimization. The average determination coefficient on the testing set was 0.73. The results indicate that compared with the traditional estimated ultimate recovery prediction methods, the established deep neural network model has the strengths of a simple procedure and low time consumption, and the deep neural network model can be easily updated to improve prediction accuracy when new well information is obtained.
Publications
- Article type
- Year
- Co-author
Article type
Year
Open Access
Original Article
Issue
Advances in Geo-Energy Research 2022, 6(2): 111-122
Published: 03 February 2022
Downloads:128
Total 1