The Internet of Things (IoT) is currently reflected in the increase in the number of connected objects, that is, devices with their own identity and computing and communication capacities. IoT is recognized as one of the most critical areas for future technologies, gaining worldwide attention. It applies to many areas, where it has achieved success, such as healthcare, where a patient is monitored using nodes and lightweight sensors. However, the powerful functions of IoT in the medical field are based on communication, analysis, processing, and management of data autonomously without any manual intervention, which presents many difficulties, such as energy consumption. However, these issues significantly slow down the development and rapid deployment of this technology. The main causes of wasted energy from connected objects include collisions that occur when two or more nodes send data simultaneously and the leading cause of data retransmission that occurs when a collision occurs or when data are not received correctly due to channel fading. The distance between nodes is one of the factors influencing energy consumption. In this article, we have proposed direct communication between nodes to avoid collision domains, which will help reduce data retransmission. The results show that the distribution can ensure the performance of the system under general conditions compared to the centralization and to the existing works.
- Article type
- Year
- Co-author
Artificial Intelligence (AI) is based on algorithms that allow machines to make decisions for humans. This technology enhances the users’ experience in various ways. Several studies have been conducted in the field of education to solve the problem of student orientation and performance using various Machine Learning (ML) algorithms. The main goal of this article is to predict Moroccan students’ performance in the region of Guelmim Oued Noun using an intelligent system based on neural networks, one of the best data mining techniques that provided us with the best results.