Sort:
Open Access Editorial Issue
Editorial: Innovations, advances, and challenges in precision radiation oncology physics
Precision Radiation Oncology 2023, 7 (4): 222-224
Published: 29 December 2023
Abstract Collect
Open Access Original Article Issue
Dosimetric response of Gafchromic™ EBT-XD film to therapeutic protons
Precision Radiation Oncology 2023, 7 (1): 15-26
Published: 02 March 2023
Abstract Collect

The EBT-XD model of Gafchromic™ films has a broader optimal dynamic dose range, up to 40 Gy, compared with its predecessor models. This characteristic has made EBT-XD films suitable for high-dose applications, such as stereotactic body radiotherapy and stereotactic radiosurgery, as well as ultra-high dose rate FLASH radiotherapy. The purpose of the current study was to characterize the dependence of EBT-XD film response on linear energy transfer (LET) and dose rate of therapeutic protons from a synchrotron. A clinical spot-scanning proton beam was used to study LET dependence at three dose-averaged LET values of 1.0 keV/μm, 3.6 keV/μm, and 7.6 keV/μm. A research proton beamline was used to study dose rate dependence at 150 Gy/s in the FLASH mode and 0.3 Gy/s in the non-FLASH mode. Film response data from dose-averaged LET values of 0.9 keV/μm and 9.0 keV/μm of the proton FLASH beam were also compared. Film response data from a clinical 6-MV photon beam were used as a reference. Both the gray value method and optical density (OD) method were used in film calibration. Calibration results using a specific OD calculation method and a generic OD calculation method were compared. The four-parameter NIH Rodbard function and three-parameter rational function were compared in fitting the calibration curves. Experimental results showed that the response of EBT-XD film is proton LET dependent, but independent of dose rate. Goodness-of-fit analysis showed that using the NIH Rodbard function is superior for both protons and photons. Using the "specific OD + NIH Rodbard function" method for EBT-XD film calibration is recommended.

Open Access Review Issue
A review of proton therapy – Current status and future directions
Precision Radiation Oncology 2022, 6 (2): 164-176
Published: 27 April 2022
Abstract Collect

The original rationale for proton therapy was its highly conformal depth-dose distributions compared to photons, which allow greater sparing of normal tissues and escalation of tumor doses, thus potentially improving outcomes. Additionally, recent research has revealed previously unrecognized advantages of proton therapy. For instance, the higher relative biological effectiveness (RBE) near the end of the proton range can be exploited to increase the difference in biologically effective dose in tumors versus normal tissues. Moreover, the smaller “dose bath,” that is, the compact nature of proton dose distributions, has been found to reduce the exposure of circulating lymphocytes and the immune organs at risk. There is emerging evidence that the resulting sparing of the immune system has the potential to improve outcomes.

Protons accelerated to energies ranging from 70 to 250 MeV enter the treatment head mounted typically on a rotating gantry. Initially, the beams of protons are narrow and, to be suitable for treatments, must be spread laterally and longitudinally and shaped appropriately. Such spreading and shaping may be accomplished electromechanically for the “passively scattered proton therapy” (PSPT) mode; or it may be achieved through magnetic scanning of thin “beamlets” of protons. Intensities of scanning beamlets are optimized to deliver intensity-modulated proton therapy (IMPT), which optimally balances tumor dose and the sparing of normal tissues. IMPT is presumably the most powerful form of proton therapy.

The planning and evaluation of proton dose distributions require substantially different techniques compared to photon therapy. This is mainly due to the fact that proton dose distributions are highly sensitive to inter- and intra-fractional variations in anatomy. In addition, for the same physical dose, the biological effectiveness of protons is different from photons. In the current practice of proton therapy, the RBE is simplistically assumed to have a constant value of 1.1. In reality, the RBE is variable and a highly complex function of numerous variables including energy of protons, dose per fraction, tissue and its environment, cell type, end point, and possibly other factors.

While the theoretical potential of proton therapy is high, the clinical evidence in support of its use has so far been mixed. The uncertainties and assumptions mentioned above and the limitations of the still evolving technology of proton therapy may have diminished its true clinical potential. Although promising results have been reported for many types of cancers, they are often based on small studies. At the same time, there have been reports of unforeseen toxicities. Furthermore, because of the high cost of proton therapy, questions are often raised about its value. The general consensus is that there is a need for continued improvement in the state of the art of proton therapy. There is also a need to generate high level evidence of the potential of protons.

Fortuitously, such efforts are taking place currently. Current research, aimed at enhancing the therapeutic potential of proton therapy, includes the determination and mitigation of the impact of the physical uncertainties on proton dose distributions through advanced image-guidance and adaptive radiotherapy techniques. Since residual uncertainties will remain, robustness evaluation and robust optimization techniques are being developed to render dose distributions more resilient and to improve confidence in them. The ongoing research also includes improving our understanding of the biological and immunomodulatory effects of proton therapy. Such research and continuing technological advancements in planning and delivery methods are likely to help demonstrate the superiority of protons.

Total 3