Lane detection is essential for many aspects of autonomous driving, such as lane-based navigation and high-definition (HD) map modeling. Although lane detection is challenging especially with complex road conditions, considerable progress has been witnessed in this area in the past several years. In this survey, we review recent visual-based lane detection datasets and methods. For datasets, we categorize them by annotations, provide detailed descriptions for each category, and show comparisons among them. For methods, we focus on methods based on deep learning and organize them in terms of their detection targets. Moreover, we introduce a new dataset with more detailed annotations for HD map modeling, a new direction for lane detection that is applicable to autonomous driving in complex road conditions, a deep neural network LineNet for lane detection, and show its application to HD map modeling.
- Article type
- Year
- Co-author
Indoor scene synthesis has become a popular topic in recent years. Synthesizing functional and plausible indoor scenes is an inherently difficult task since it requires considerable knowledge to both choose reasonable object categories and arrange objects appropriately. In this survey, we propose four criteria which group a wide range of 3D (three-dimensional) indoor scene synthesis techniques according to various aspects (specifically, four groups of categories). It also provides hints, through comprehensively comparing all the techniques to demonstrate their effectiveness and drawbacks, and discussions of potential remaining problems.