Sort:
Regular Paper Issue
Natural Image Matting with Attended Global Context
Journal of Computer Science and Technology 2023, 38 (3): 659-673
Published: 30 May 2023
Abstract Collect

Image matting is to estimate the opacity of foreground objects from an image. A few deep learning based methods have been proposed for image matting and perform well in capturing spatially close information. However, these methods fail to capture global contextual information, which has been proved essential in improving matting performance. This is because a matting image may be up to several megapixels, which is too big for a learning-based network to capture global contextual information due to the limit size of a receptive field. Although uniformly downsampling the matting image can alleviate this problem, it may result in the degradation of matting performance. To solve this problem, we introduce a natural image matting with the attended global context method to extract global contextual information from the whole image, and to condense them into a suitable size for learning-based network. Specifically, we first leverage a deformable sampling layer to obtain condensed foreground and background attended images respectively. Then, we utilize a contextual attention layer to extract information related to unknown regions from condensed foreground and background images generated by a deformable sampling layer. Besides, our network predicts a background as well as the alpha matte to obtain more purified foreground, which contributes to better qualitative performance in composition. Comprehensive experiments show that our method achieves competitive performance on both Composition-1k and the alphamatting.com benchmark quantitatively and qualitatively.

Regular Paper Issue
BHONEM: Binary High-Order Network Embedding Methods for Networked-Guarantee Loans
Journal of Computer Science and Technology 2019, 34 (3): 657-669
Published: 10 May 2019
Abstract Collect

Networked-guarantee loans may cause systemic risk related concern for the government and banks in China. The prediction of the default of enterprise loans is a typical machine learning based classification problem, and the networked guarantee makes this problem very difficult to solve. As we know, a complex network is usually stored and represented by an adjacency matrix. It is a high-dimensional and sparse matrix, whereas machine-learning methods usually need lowdimensional dense feature representations. Therefore, in this paper, we propose a binary higher-order network embedding method to learn the low-dimensional representations of a guarantee network. We first set vertices of this heterogeneous economic network by binary roles (guarantor and guarantee), and then define high-order adjacent measures based on their roles and economic domain knowledge. Afterwards, we design a penalty parameter in the objective function to balance the importance of network structure and adjacency. We optimize it by negative sampling based gradient descent algorithms, which solve the limitation of stochastic gradient descent on weighted edges without compromising efficiency. Finally, we test our proposed method on three real-world network datasets. The result shows that this method outperforms other start-of-the-art algorithms for both classification accuracy and robustness, especially in a guarantee network.

Total 2