The collaboration of multiple Reconfigurable Intelligent Surfaces (RISs) and Access Points (APs) enjoys advantages of capacity enhancement, power saving, etc., making the RIS-assisted cell-free network an important architecture for future communications. Similar to most existing works on RIS-assisted communications, the multi-hop link among RISs, i.e., the reflecting link including more than one RISs, is usually ignored in RIS-assisted cell-free networks. In these scenarios, however, since multiple RISs are closely deployed, we find that the multi-hop channels should not be simply ignored due to their potential for capacity improvement. Unfortunately, to the best of our knowledge, there is no work exploring the multi-hop transmission of RIS-assisted cell-free networks. To fill in this blank, we investigate the multi-hop transmission of RIS-assisted cell-free networks, including the multi-hop channel model and the corresponding beamforming design. Specifically, we propose a general multi-hop transmission model, which takes the direct links, single-reflecting links, and multi-hop links into account. Based on this model, we formulate a beamforming design problem in an RIS-assisted cell-free network, which allows us to maximize the multi-user sum-rate with considering the impact of multi-hop channels. To address the non-convexity of the formulated problem, a joint active and passive beamforming scheme is proposed to solve the problem. Particularly, by utilizing fractional programming, we decouple the coupled beamforming parameters in the problem, and then these parameters are alternately optimized until the convergence of the sum-rate. Simulation results verify that the consideration for multi-hop links is necessary, and the capacity performance of the proposed scheme is 20% higher than those of the existing schemes.
- Article type
- Year
- Co-author
Thanks to the recent advances in metamaterials, Reconfigurable Intelligent Surface (RIS) has emerged as a promising technology for future 6G wireless communications. Benefiting from its high array gain, low cost, and low power consumption, RISs are expected to greatly enlarge signal coverage, improve system capacity, and increase energy efficiency. In this article, we systematically overview the emerging RIS technology with the focus on its key basics, nine fundamental issues, and one critical problem. Specifically, we first explain the RIS basics, including its working principles, hardware structures, and potential benefits for communications. Based on these basics, nine fundamental issues of RISs, such as “What’s the differences between RISs and massive MIMO?” and “Is RIS really intelligent?”, are explicitly addressed to elaborate its technical features, distinguish it from existing technologies, and clarify some misunderstandings in the literature. Then, one critical problem of RISs is revealed that, due to the “multiplicative fading” effect, existing passive RISs can hardly achieve visible performance gains in many communication scenarios with strong direct links. To address this critical problem, a potential solution called active RISs is introduced, and its effectiveness is demonstrated by numerical simulations.