With the coming of exascale supercomputing era, power efficiency has become the most important obstacle to build an exascale system. Dataflow architecture has native advantage in achieving high power efficiency for scientific applications. However, the state-of-the-art dataflow architectures fail to exploit high parallelism for loop processing. To address this issue, we propose a pipelining loop optimization method (PLO), which makes iterations in loops flow in the processing element (PE) array of dataflow accelerator. This method consists of two techniques, architecture-assisted hardware iteration and instruction-assisted software iteration. In hardware iteration execution model, an on-chip loop controller is designed to generate loop indexes, reducing the complexity of computing kernel and laying a good foundation for pipelining execution. In software iteration execution model, additional loop instructions are presented to solve the iteration dependency problem. Via these two techniques, the average number of instructions ready to execute per cycle is increased to keep floating-point unit busy. Simulation results show that our proposed method outperforms static and dynamic loop execution model in floating-point efficiency by 2.45x and 1.1x on average, respectively, while the hardware cost of these two techniques is acceptable.
- Article type
- Year
- Co-author
Double buffering is an effective mechanism to hide the latency of data transfers between on-chip and off-chip memory. However, in dataflow architecture, the swapping of two buffers during the execution of many tiles decreases the performance because of repetitive filling and draining of the dataflow accelerator. In this work, we propose a non-stop double buffering mechanism for dataflow architecture. The proposed non-stop mechanism assigns tiles to the processing element array without stopping the execution of processing elements through optimizing control logic in dataflow architecture. Moreover, we propose a work-flow program to cooperate with the non-stop double buffering mechanism. After optimizations both on control logic and on work-flow program, the filling and draining of the array needs to be done only once across the execution of all tiles belonging to the same dataflow graph. Experimental results show that the proposed double buffering mechanism for dataflow architecture achieves a 16.2% average efficiency improvement over that without the optimization.