Publications
Sort:
Issue
Application of bioremediation in oil contaminated soil
Journal of Groundwater Science and Engineering 2017, 5 (2): 116-123
Published: 28 June 2017
Abstract PDF (137.6 KB) Collect
Downloads:8

The long-term oil exploitation in oil fields has led to pollution of surrounding soil, creating a serious ecological problem. In order to promote and improve the application of microbial remediation in oil contaminated soil, experiment is carried out in polluted area in Zhongyuan Oilfield. In the experiment, indigenous microorganisms and other physical and chemical methods are employed, ryegrass is grown, and environmental factors in soil are regulated to degrade the oil and treat the polluted soil. Results show that when the average oil content in the soil is about 523.08 mg/kg, 65 days’ remediation through plants and microorganisms could help bring the oil content down to 74.61 mg/kg, achieving a degradation rate of 85.74%; through salinity treatment, salt content in soil is reduced by 62.93-82.03% to 399-823 mg/kg from previous 2.22 g/kg. Through this experiment, the bioremediation method is improved and its effectiveness and feasibility are testified. The result has been applied in Zhongyuan Oilfield and has brought fair ecological and economic benefits, providing technical support to the treatment of contaminated soil of the same kind, and offering some insights to the treatment of soil contaminated by other organic pollutants.

Issue
Application research of enhanced in-situ micro-ecological remediation of petroleum contaminated soil
Journal of Groundwater Science and Engineering 2016, 4 (3): 157-164
Published: 28 September 2016
Abstract PDF (378.5 KB) Collect
Downloads:9

Experimental study of enhanced in-situ micro-ecological remediation of petroleum contaminated loess soil was carried out in Zhongyuan oil production areas, and the enhanced in-situ micro-ecological remediation technique includes optimistic in-situ microbial communities, physical chemistry methods, alfalfa planting and regulation of soil environmental elements. Experiments showed that the oil content in the contaminated soil with oil content about 2 898.25 mg/kg can be reduced about 98.61% after in-situ micro-ecological remediation for 99 days, which demonstrated the effectiveness of in-situ micro-ecological remediation methods for petroleum contaminated soil in central plains of China, and explored the practical and feasible application of these methods.

Total 2