Sort:
Issue
Application of bioremediation in oil contaminated soil
Journal of Groundwater Science and Engineering 2017, 5 (2): 116-123
Published: 28 June 2017
Abstract PDF (137.6 KB) Collect
Downloads:8

The long-term oil exploitation in oil fields has led to pollution of surrounding soil, creating a serious ecological problem. In order to promote and improve the application of microbial remediation in oil contaminated soil, experiment is carried out in polluted area in Zhongyuan Oilfield. In the experiment, indigenous microorganisms and other physical and chemical methods are employed, ryegrass is grown, and environmental factors in soil are regulated to degrade the oil and treat the polluted soil. Results show that when the average oil content in the soil is about 523.08 mg/kg, 65 days’ remediation through plants and microorganisms could help bring the oil content down to 74.61 mg/kg, achieving a degradation rate of 85.74%; through salinity treatment, salt content in soil is reduced by 62.93-82.03% to 399-823 mg/kg from previous 2.22 g/kg. Through this experiment, the bioremediation method is improved and its effectiveness and feasibility are testified. The result has been applied in Zhongyuan Oilfield and has brought fair ecological and economic benefits, providing technical support to the treatment of contaminated soil of the same kind, and offering some insights to the treatment of soil contaminated by other organic pollutants.

Issue
Application research of enhanced in-situ micro-ecological remediation of petroleum contaminated soil
Journal of Groundwater Science and Engineering 2016, 4 (3): 157-164
Published: 28 September 2016
Abstract PDF (378.5 KB) Collect
Downloads:9

Experimental study of enhanced in-situ micro-ecological remediation of petroleum contaminated loess soil was carried out in Zhongyuan oil production areas, and the enhanced in-situ micro-ecological remediation technique includes optimistic in-situ microbial communities, physical chemistry methods, alfalfa planting and regulation of soil environmental elements. Experiments showed that the oil content in the contaminated soil with oil content about 2 898.25 mg/kg can be reduced about 98.61% after in-situ micro-ecological remediation for 99 days, which demonstrated the effectiveness of in-situ micro-ecological remediation methods for petroleum contaminated soil in central plains of China, and explored the practical and feasible application of these methods.

Issue
Study on Ecological Environment and Sustainable Land Use Based on Satellite Remote Sensing
Journal of Groundwater Science and Engineering 2013, 1 (1): 89-96
Published: 28 April 2013
Abstract PDF (8.6 MB) Collect
Downloads:6

GIS and RS techniques have been applied to interpret satellite data in 1992, 2000 and 2010. Further, the ecological environment factors of these three periods and the data for various types of land use have been obtained. LUDI in the Amur River Basin from 1992 to 2010 has been quantitatively analyzed by using the land use dynamic (LUDI) model and of land use transfer matrix model. The results indicated that from 1992 to 2010 the LUDI of land desertification is greatest, and is the most dramatic change. The comprehensive land use dynamic in the study area is 15.25, hence the land type is characterized by rapid change. In addition the area of woodland and farmland continues to increase, which has been mainly transformed from the mixture of forestland and grassland, marsh and wetland, this is an outcome of the production of shelter-forest plantation in North China, Northeast China and Northwest China. In the ten years period of the study, the area of desertified land has increased, changing mainly from a mixture of woodland and grassland. This study can rovide data for eco-geological environment management.

Total 3