Sort:
Open Access Paper Issue
A light field measurement system through PSF estimation by a morphology-based method
International Journal of Extreme Manufacturing 2021, 3(4): 045201
Published: 29 July 2021
Abstract PDF (1.6 MB) Collect
Downloads:2

Light field imaging technology can obtain three-dimensional (3D) information of a test surface in a single exposure. Traditional light field reconstruction algorithms not only take a long time to trace back to the original image, but also require the exact parameters of the light field system, such as the position and posture of a microlens array (MLA), which will cause errors in the reconstructed image if these parameters cannot be precisely obtained. This paper proposes a reconstruction algorithm for light field imaging based on the point spread function (PSF), which does not require prior knowledge of the system. The accurate PSF derivation process of a light field system is presented, and modeling and simulation were conducted to obtain the relationship between the spatial distribution characteristics and the PSF of the light field system. A morphology-based method is proposed to analyze the overlapping area of the subimages of light field images to identify the accurate spatial location of the MLA used in the system, which is thereafter used to accurately refocus light field imaging. A light field system is built to verify the algorithm’s effectiveness. Experimental results show that the measurement accuracy is increased over 41.0% compared with the traditional method by measuring a step standard. The accuracy of parameters is also improved through a microstructure measurement with a peak-to-valley value of 25.4% and root mean square value of 23.5% improvement. This further validates that the algorithm can effectively improve the refocusing efficiency and the accuracy of the light field imaging results with the superiority of refocusing light field imaging without prior knowledge of the system. The proposed method provides a new solution for fast and accurate 3D measurement based on a light field.

Open Access Topical Review Issue
Defect inspection technologies for additive manufacturing
International Journal of Extreme Manufacturing 2021, 3(2): 022002
Published: 03 March 2021
Abstract PDF (6.5 MB) Collect
Downloads:14

Additive manufacturing (AM) technology is considered one of the most promising manufacturing technologies in the aerospace and defense industries. However, AM components are known to have various internal defects, such as powder agglomeration, balling, porosity, internal cracks and thermal/internal stress, which can significantly affect the quality, mechanical properties and safety of final parts. Therefore, defect inspection methods are important for reducing manufactured defects and improving the surface quality and mechanical properties of AM components. This paper describes defect inspection technologies and their applications in AM processes. The architecture of defects in AM processes is reviewed. Traditional defect detection technology and the surface defect detection methods based on deep learning are summarized, and future aspects are suggested.

Open Access Topical Review Issue
Multi-sensor measurement and data fusion technology for manufacturing process monitoring: a literature review
International Journal of Extreme Manufacturing 2020, 2(2): 022001
Published: 30 March 2020
Abstract PDF (5.8 MB) Collect
Downloads:7

Due to the rapid development of precision manufacturing technology, much research has been conducted in the field of multisensor measurement and data fusion technology with a goal of enhancing monitoring capabilities in terms of measurement accuracy and information richness, thereby improving the efficiency and precision of manufacturing. In a multisensor system, each sensor independently measures certain parameters. Then, the system uses a relevant signal-processing algorithm to combine all of the independent measurements into a comprehensive set of measurement results. The purpose of this paper is to describe multisensor measurement and data fusion technology and its applications in precision monitoring systems. The architecture of multisensor measurement systems is reviewed, and some implementations in manufacturing systems are presented. In addition to the multisensor measurement system, related data fusion methods and algorithms are summarized. Further perspectives on multisensor monitoring and data fusion technology are included at the end of this paper.

Total 3