Multimaterial (MM) 3D printing shows great potential for application in metamaterials, flexible electronics, biomedical devices and robots, since it can seamlessly integrate distinctive materials into one printed structure. Among numerous MM 3D printing technologies, digital light processing (DLP) MM 3D printing is compatible with a wide range of materials from hydrogels to ceramics, and can print MM 3D structures with high resolution, high complexity and fast speed. This paper introduces the fundamental mechanisms of DLP 3D printing, and reviews the recent advances of DLP MM 3D printing technologies with emphasis on material switching methods and material contamination issues. It also summarizes a number of typical examples of DLP MM 3D printing systems developed in the past decade, and introduces their system structures, working principles, material switching methods, residual resin removal methods, printing steps, as well as the representative structures and applications. Finally, we provide perspectives on the directions of the further development of DLP MM 3D printing technology.
- Article type
- Year
- Co-author
Two-photon polymerization (TPP) is a cutting-edge micro/nanoscale three-dimensional (3D) printing technology based on the principle of two-photon absorption. TPP surpasses the diffraction limit in achieving feature sizes and excels in fabricating intricate 3D micro/nanostructures with exceptional resolution. The concept of 4D entails the fabrication of structures utilizing smart materials capable of undergoing shape, property, or functional changes in response to external stimuli over time. The integration of TPP and 4D printing introduces the possibility of producing responsive structures with micro/nanoscale accuracy, thereby enhancing the capabilities and potential applications of both technologies. This paper comprehensively reviews TPP-based 4D printing technology and its diverse applications. First, the working principles of TPP and its recent advancements are introduced. Second, the optional 4D printing materials suitable for fabrication with TPP are discussed. Finally, this review paper highlights several noteworthy applications of TPP-based 4D printing, including domains such as biomedical microrobots, bioinspired microactuators, autonomous mobile microrobots, transformable devices and robots, as well as anti-counterfeiting microdevices. In conclusion, this paper provides valuable insights into the current status and future prospects of TPP-based 4D printing technology, thereby serving as a guide for researchers and practitioners.
Projection micro stereolithography (PμSL) is a high-resolution (up to 0.6 μm) 3D printing technology based on area projection triggered photopolymerization, and capable of fabricating complex 3D architectures covering multiple scales and with multiple materials. This paper reviews the recent development of the PμSL based 3D printing technologies, together with the related applications. It introduces the working principle, the commercialized products, and the recent multiscale, multimaterial printing capability of PμSL as well as some functional photopolymers that are suitable to PμSL. This review paper also summarizes a few typical applications of PμSL including mechanical metamaterials, optical components, 4D printing, bioinspired materials and biomedical applications, and offers perspectives on the directions of the further development of PμSL based 3D printing technology.