Sort:
Open Access Research Article Issue
The SUMO E3 ligase CBX4 is identified as a poor prognostic marker of gastric cancer through multipronged OMIC analyses
Genes & Diseases 2021, 8 (6): 827-837
Published: 01 September 2020
Abstract PDF (2.3 MB) Collect
Downloads:3

Gastric cancer (GC) is one of the most common malignancies, with an ever-increasing incidence and high mortality rate. Chromobox4 (CBX4), also named hPC2, is a small ubiquitin-related modifier (SUMO) E3 ligase. Previous studies have found that high CBX4 expression is associated with tumor size, pathologic differentiation and decreased patient survival in hepatocellular carcinoma (HCC). However, the expression and prognostic value of CBX4 in GC have not been clarified. In our study, ONCOMINE, UALCAN, Kaplan-Meier Plotter, cBioPortal, DAVID 6.8 and TIMER were utilized. RT-PCR, immunohistochemistry (IHC), Western blot, CCK-8 assay, cell apoptosis assay, cell cycle assay were used to further verify in GC tissue samples or cell line. The transcriptional and protein level of CBX4 in GC tissues was found significantly elevated and a significant association between the expression of CBX4 and clinicopathological parameters was found in GC patients. Low expression of CBX4 in GC patients were correlated with a significantly improved prognosis. The functions of CBX4 are primarily related to the stem cell pluripotency signaling pathway, Hippo signaling pathway, HTLV-I infection, Notch signaling pathway, and N-glycan biosynthesis. Our results may provide novel insights for the selection of therapeutic targets and prognostic biomarkers for GC.

Open Access Review Article Issue
Organoid models of gastrointestinal Neoplasms: Origin, current status and future applications in personalized medicine
Genes & Diseases 2018, 5 (4): 323-330
Published: 24 September 2018
Abstract PDF (581.9 KB) Collect
Downloads:1

The in vitro organoid model is a major technological breakthrough that has been established as an important tool in many basic biological and clinical applications. This near-physiological 3D culture system accurately models various biological processes, including tissue renewal, stem cell/niche functions and tissue responses to drugs, mutations or damage. Organoids have the potential value of being an accurate model for disease predictions or drug screening applications and to identify the ideal treatment for that patient. Carcinogenesis can be modeled by mutating specific cancer genes in wild-type organoids; and patient-derived organoids provide an important resource in the development of personalized cancer treatment. Organoids from cancer patients could be used to identify the ideal treatment for a specific patient by growing matched healthy and diseased organoids from human cancer patients which additionally enables clinical screens for drug combinations. Organoids could also provide autologous cells or—in the future—tissue for transplantation. In this review, we discuss the current advances, challenges and potential applications of this technique in gastrointestinal neoplasms.

Total 2