Sort:
Open Access Invited Review Issue
Research progress and prospects of utilizing carbon-based nanomaterials in enhanced oil recovery
Advances in Geo-Energy Research 2024, 14(3): 201-214
Published: 25 November 2024
Abstract PDF (546.8 KB) Collect
Downloads:15

Carbon-based nanomaterials have received heightened global interest by petroleum researchers because of their abundant stocks of necessary raw materials, ease of size control, readiness for modification, and high stability. In light of the practical demand for oil development, this study reviews the recent progress in the research of enhancing oil recovery using carbon-based nanomaterials of various dimensions, including carbon dots, carbon nanotubes, carbon nanofibers, and graphene and its derivatives. Moreover, the study elaborates on the application of these materials in high-efficiency oil displacement, profile control and water shutoff, as well as the fracturing process. The related challenges and solutions in practical oil exploration and development are analyzed, and the application prospects of these materials in future oil reservoirs and oilfields are predicted. This review provides valuable theoretical and experimental references for the large-scale application of carbon-based nanomaterials.

Open Access Original Article Issue
Enhancement of oil transport through nanopores via cation exchange in thin brine films at rock-oil interface
Advances in Geo-Energy Research 2024, 12(1): 22-34
Published: 05 March 2024
Abstract PDF (1.8 MB) Collect
Downloads:12

Interactions at the oil/brine/rock interfaces play a pivotal role in the mobility of crude oil within reservoir matrices. Unraveling the microscopic mechanisms of these interactions is crucial for ion-engineered water flooding in secondary and tertiary oil recovery. In this study, the occurrence and transport behavior of crude oil in kaolinite nanopores covered with thin brine films was investigated by molecular dynamics simulation. There is an apparent interface layered phenomenon for the liquid molecules in slit pores and the polar oil components primarily concentrate at the oil/brine interfacial region and form various binding connections with ions. The interfacial interactions between the polar oil components and brine ions exhibit an inhibitory effect on the transport of crude oil through nanopores. The interaction mechanism between acetic acid molecules and hydrated ions was elucidated by interaction modes and interaction intensity, which was proved to illustrate the flow difference in different brine film systems. Moreover, a strategy of exchanging the binding sites of divalent cations with acetic acid molecules by monovalent cations with a higher concentration was proposed. The cation exchange scheme was further validated, demonstrating an enhancement in the oil mobility within nanopores. These findings deepen our understanding of oil/brine/rock interfacial interactions and provide a significant molecular perspective on ion-engineered water flooding for enhanced oil recovery.

Total 2
1/11GOpage