BaTiO3 (BTO) ferroelectric films, which are renowned for their lead-free compositions, superior stability, and absence of a wake-up effect, are promising candidate materials in the field of non-volatile memories. However, the prerequisites for high-temperature conditions in the fabrication of ferroelectric thin films impose constraints on the substrate choice, which has limited the advancement in non-volatile memories based on single-crystal flexible BTO films with robust ferroelectric properties. Herein, a technique has been developed for the fabrication of flexible devices using a pulsed laser deposition system. BTO ferroelectric films have then been deposited onto a flexible mica substrate, with SrTiO3 (STO) serving as a buffer layer. The obtained flexible BTO devices exhibited excellent ferroelectricity, with a maximum polarization (2Pmax) of up to 42.58 μC/cm2 and a remnant polarization (2Pr) of up to 21.39 μC/cm2. Furthermore, even after 1000 bending cycles, the bipolar switching endurance remained high at 1012 cycles. After 104 s, the flexible BTO device still maintained excellent polarization characteristics. These results make the flexible BTO ferroelectric thin film a potential candidate for the next generation of non-volatile memories.
- Article type
- Year
- Co-author


The field of artificial intelligence and neural computing has been rapidly expanding due to the implementation of resistive random-access memory (RRAM) based artificial synaptic. However, the low flexibility of conventional RRAM materials hinders their ability to mimic synaptic behavior accurately. To overcome such limitation, organic-2D composites with high mechanical properties are proposed as the active layer of RRAM. Moreover, we enhance the reliability of the device by ZrO2 insertion layer, resulting in stable synaptic performance. The Ag/PVA:h-BN/ZrO2/ITO devices show stable bipolar resistive switching behavior with an ON/OFF ratio of over 5 × 102, a ~2400 cycles endurance and a long retention time (>6 × 103s), which are essential for the development of high-performance RRAMs. We also study the possible synaptic mechanism and dynamic plasticity of the memory device, observing the transition from short-term potentiation (STP) to long-term potentiation (LTP) under the effect of continuous voltage pulses. Moreover, the device exhibits both long-term depression (LTD) and paired-pulse facilitation (PPF) properties, which have significant implications for the design of organic-2D composite material RRAMs that aim to mimic biological synapses, representing promising avenues for the development of advanced neuromorphic computing systems.

SiGe is recognised as an excellent thermoelectric material with superior mechanical properties and thermal stability in regions with high temperatures. This study explores a novel strategy for co-regulating thermoelectric transport parameters to achieve high thermoelectric properties of p-type SiGe in the mid-temperature region by incorporating nano-TaC into SiGe combined ball milling with spark plasma sintering. By optimizing the amount of TaC in the SiGe matrix, the power factors were significantly increased due to the modulation doping effect based on the work function matching of SiGe with TaC. Simultaneously, the ensemble effect of the nanostructure leads to a significant decrease in thermal conductivity. Thus, a high ZT of 1.06 was accomplished at 873 K, which is 64 % higher than that of typical radioisotope thermoelectric generator. Our research offers a novel strategy for expanding and enhancing the thermoelectric properties of SiGe materials in the medium temperature range.