Sort:
Open Access Research Article Issue
Simultaneous achievement of large electrocaloric effect and ultra-wide operating temperature range in BaTiO3-based lead-free ceramic
Journal of Advanced Ceramics 2024, 13(8): 1234-1241
Published: 30 August 2024
Abstract PDF (12.9 MB) Collect
Downloads:342

The electrocaloric effect (ECE), known for its environmentally friendly characteristics, holds significant promise for advancing next-generation solid-state refrigeration technologies. Achieving a large ECE along with a wide working temperature range near room temperature remains a key developmental goal. In this study, we successfully obtained a substantial ECE of 1.78 K and an extensive working temperature range of 103 K (ΔT > 1.52 K) near room temperature in CaZrO3-modified BaTiO3 lead-free ferroelectric ceramics. Furthermore, this achievement was verified using direct methods. The piezoresponse force microscopy (PFM) results suggest that the broad temperature range is attributed to the formation of ferroelectric microdomains and polar nanoregions (PNRs). Furthermore, X-ray photoelectron spectroscopy (XPS) and ultraviolet‒visible (UV‒Vis) spectroscopy reveal a decrease in the oxygen vacancy concentration and an increase in the bandgap for higher CaZrO3 doping levels. These changes synergistically enhance the maximum applied electric field, helping to achieve a high-performance ECE near room temperature. This research presents a straightforward and effective approach for achieving high-performance ECEs in BaTiO3 lead-free ceramics, offering promising prospects for application in next-generation solid-state refrigeration technologies.

Open Access Research paper Issue
Significantly enhanced electrocaloric effect by composition modulation in lead-free BaTiO3-based ceramics
Journal of Materiomics 2025, 11(3)
Published: 22 June 2024
Abstract Collect

The electrocaloric effect (ECE) offers a pathway to environmentally sustainable and easily miniaturized refrigeration technology, positioning it as a front-runner for the next generation of solid-state cooling solutions. This research unveils a remarkable ECE in a finely tuned (Ba0.86Ca0.14)0.98La0.02Ti0.92Sn0.08O3 ceramic, exhibiting a temperature shift (ΔT) of 1.6 K across more than 85% of the maximum ΔTTmax) and spanning an exceptionally wide operational range of 92 K. Our investigation on dielectric responses and ferroelectric polarization-electric field (PE) loops suggests that the broad operational scope results from the fragmentation of extended ferroelectric domains into smaller domains and polar nano-regions (PNRs) supported by PFM analysis. Furthermore, the introduction of La enhances spontaneous polarization by significantly extending the maximum electric field that can be applied, facilitating high-performance ECE at ambient temperature. This study positions BaTiO3-based lead-free ceramic as a sustainable alternative for addressing the cooling demands of modern electronic components, marking a significant stride toward next-generation solid-state refrigeration.

Total 2
1/11GOpage