Sort:
Open Access Original Article Issue
Application prospects of deep in-situ condition-preserved coring and testing systems
Advances in Geo-Energy Research 2024, 14(1): 12-24
Published: 05 August 2024
Abstract PDF (972.7 KB) Collect
Downloads:5

Shallow resources are becoming increasingly depleted, deep resource exploration has become a global strategy. The design and testing of deep in-situ core samples are prerequisites for exploring deep resources; however, no in-situ condition-preserved coring and testing techniques and tools have been reported yet. Here, the first deep in-situ condition-preserved coring system (with the preservation of pressure, temperature, substance, light, and moisture) was developed that considers the effects of high water pressure and formation dynamic loads, along with an in-situ condition-preserved testing system. A pressure-preserved controller was designed, achieving the ultimate capacity of 140 MPa and 150 ℃. A temperature-preserved coring system combining active heating and passive insulation was constructed, realizing temperature preservation from room temperature to 150 ℃. Three generations of film-formation principles and methods were designed, achieving an excellent quality preserved rate, moisture preserved rate, and visible light barrier rate. Moreover, a deep in-situ condition-preserved coring system, and a simulated coring platform for large cores under in-situ environments was fabricated. A non-contact testing system was derived to cut and prepare specimens under in-situ environment and to perform non-contact non-destructive testing and true triaxial testing. The research findings can be successfully applied to deep coal and gas development, deep oil and gas resources assessment, and deep-sea sediment prospecting, achieving excellent application outcomes. This study provides important theoretical, technical and hardware support for deep in-situ rock physics and mechanics research and deep resource exploitation.

Open Access Original Paper Issue
Research on thermal insulation materials properties under HTHP conditions for deep oil and gas reservoir rock ITP-Coring
Petroleum Science 2024, 21(4): 2625-2637
Published: 20 March 2024
Abstract PDF (4 MB) Collect
Downloads:0

Deep oil and gas reservoirs are under high-temperature conditions, but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability, resulting in distorted resource assessments. The development of in situ temperature-preserved coring (ITP-Coring) technology for deep reservoir rock is urgent, and thermal insulation materials are key. Therefore, hollow glass microsphere/epoxy resin thermal insulation materials (HGM/EP materials) were proposed as thermal insulation materials. The materials properties under coupled high-temperature and high-pressure (HTHP) conditions were tested. The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased; additionally, increasing temperature accelerated the process. High temperatures directly caused the thermal conductivity of the materials to increase; additionally, the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity. High temperatures weakened the matrix, and high pressures destroyed the HGM, which resulted in a decrease in the tensile mechanical properties of the materials. The materials entered the high elastic state at 150 °C, and the mechanical properties were weakened more obviously, while the pressure led to a significant effect when the water absorption was above 10%. Meanwhile, the tensile strength/strain were 13.62 MPa/1.3% and 6.09 MPa/0.86% at 100 °C and 100 MPa, respectively, which meet the application requirements of the self-designed coring device. Finally, K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100 °C and 100 MPa. To further improve the materials properties, the interface layer and EP matrix should be optimized. The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development.

Total 2