AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

A survey on rendering homogeneous participating media

School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
University of California, Santa Barbara, USA
Show Author Information

Graphical Abstract

Abstract

Participating media are frequent in real-world scenes, whether they contain milk, fruit juice, oil, or muddy water in a river or the ocean. Incoming light interacts with these participating media in complex ways: refraction at boundaries and scattering and absorption inside volumes. The radiative transfer equation is the key to solving this problem. There are several categories of rendering methods which are all based on this equation, but using different solutions. In this paper, we introduce these groups, which include volume density estimation based approaches, virtual point/ray/beam lights, point based approaches, Monte Carlo based approaches, acceleration techniques, accurate single scattering methods, neural network based methods, and spatially-correlated participating media related methods. As well as discussing these methods, we consider the challenges and open problems in this research area.

References

[1]
Křvánek, J.; Georgiev, I.; Hachisuka, T.; Vévoda, P.; Šik, M.; Nowrouzezahrai, D.; Jarosz, W. Unifying points, beams, and paths in volumetric light transport simulation. ACM Transactions on Graphics Vol. 33, No. 4, Article No. 103, 2014.
[2]
Novák, J.; Nowrouzezahrai, D.; Dachsbacher, C.; Jarosz, W. Virtual ray lights for rendering scenes with participating media. ACM Transactions on Graphics Vol. 31, No. 4, Article No. 60, 2012.
[3]
Herholz, S.; Zhao, Y. Y.; Elek, O.; Nowrouzezahrai, D.; Lensch, H. P. A.; Křvánek, J. Volume path guiding based on zero-variance random walk theory. ACM Transactions on Graphics Vol. 38, No. 3, Article No. 25, 2019.
[4]
Wang, B. B.; Holzschuch, N. Point-based rendering for homogeneous participating media with refractive boundaries. IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 10, 2743-2757, 2018.
[5]
Bitterli, B.; Jarosz, W. Beyond points and beams: Higher-dimensional photon samples for volumetric light transport. ACM Transactions on Graphics Vol. 36, No. 4, Article No. 112, 2017.
[6]
Chandrasekhar, S. Radiative Transfer. New York: Dover Publications, 1960.
[7]
Kajiya, J. T. The rendering equation. ACM SIGGRAPH Computer Graphics Vol. 20, No. 4, 143-150, 1986.
[8]
Jensen, H. W.; Christensen, P. H. Efficient simulation of light transport in scenes with participating media using photon maps. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, 311-320, 1998.
[9]
Jarosz, W.; Zwicker, M.; Jensen, H. W. The beam radiance estimate for volumetric photon mapping. Computer Graphics Forum Vol. 27, No. 2, 557-566, 2008.
[10]
Jarosz, W.; Nowrouzezahrai, D.; Sadeghi, I.; Jensen, H. W. A comprehensive theory of volumetric radiance estimation using photon points and beams. ACM Transactions on Graphics Vol. 30, No. 1, Article No. 5, 2011.
[11]
Jarosz, W.; Nowrouzezahrai, D.; Thomas, R.; Sloan, P. P.; Zwicker, M. Progressive photon beams. ACM Transactions on Graphics Vol. 30, No. 6, 1-12, 2011.
[12]
Deng, X.; Jiao, S. J.; Bitterli, B.; Jarosz, W. Photon surfaces for robust, unbiased volumetric density estimation. ACM Transactions on Graphics Vol. 38, No. 4, Article No. 46, 2019.
[13]
Qin, H.; Sun, X.; Hou, Q. M.; Guo, B. N.; Zhou, K. Unbiased photon gathering for light transport simulation. ACM Transactions on Graphics Vol. 34, No. 6, Article No. 208, 2015.
[14]
Novák, J.; Nowrouzezahrai, D.; Dachsbacher, C.; Jarosz, W. Progressive virtual beam lights. Computer Graphics Forum Vol. 31, No. 4, 1407-1413, 2012.
[15]
Keller, A. Instant radiosity. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, 49-56, 1997.
[16]
Walter, B.; Fernandez, S.; Arbree, A.; Bala, K.; Donikian, M.; Greenberg, D. P. Lightcuts: A scalable approach to illumination. ACM Transactions on Graphics Vol. 24, No. 3, 1098-1107, 2005.
[17]
Walter, B.; Arbree, A.; Bala, K.; Greenberg, D. P. Multidimensional lightcuts. ACM Transactions on Graphics Vol. 25, No. 3, 1081-1088, 2006.
[18]
Ou, J.; Pellacini, F. LightSlice: Matrix slice sampling for the many-lights problem. ACM Transactions on Graphics Vol. 30, No. 6, 1-8, 2011.
[19]
Hašan, M.; Křvánek, J.; Walter, B.; Bala, K. Virtual spherical lights for many-light rendering of glossy scenes. ACM Transactions on Graphics Vol. 28, No. 5, 1-6, 2009.
[20]
Novák, J.; Engelhardt, T.; Dachsbacher, C. Screen-space bias compensation for interactive high-quality global illumination with virtual point lights. In: Proceedings of the Symposium on Interactive 3D Graphics and Games, 119-124, 2011.
[21]
Arbree, A.; Walter, B.; Bala, K. Single-pass scalable subsurface rendering with lightcuts. Computer Graphics Forum Vol. 27, No. 2, 507-516, 2008.
[22]
Jensen, H. W.; Marschner, S. R.; Levoy, M.; Hanrahan, P. A practical model for subsurface light transport. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, 511-518, 2001.
[23]
Wang, B. B.; Ge, L. S.; Holzschuch, N. Precomputed multiple scattering for rapid light simulation in participating media. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 7, 2456-2470, 2020.
[24]
Frederickx, R.; Bartels, P.; Dutré, P. Adaptive LightSlice for virtual ray lights. In: Proceedings of the EG 2015 - Short Papers, 2015.
[25]
Yuksel, C.; Yuksel, C. Lighting grid hierarchy for self-illuminating explosions. ACM Transactions on Graphics Vol. 36, No. 4, Article No. 110, 2017.
[26]
Huo, Y. C.; Wang, R.; Hu, T. L.; Hua, W.; Bao, H. J. Adaptive matrix column sampling and completion for rendering participating media. ACM Transactions on Graphics Vol. 35, No. 6, Article No. 167, 2016.
[27]
Christensen, P. Point-based approximate color bleeding. Technical Report 08-01. Pixar Technical Notes. 2008. Available at https://graphics.pixar.com/library/PointBasedColorBleeding/.
[28]
Wang, B. B.; Gascuel, J.-D.; Holzschuch, N. Point-based light transport for participating media with refractive boundaries. In: Proceedings of the Eurographics Symposium on Rendering: Experimental Ideas & Implementations, 109-119, 2016.
[29]
Liang, Y. L.; Wang, B. B.; Wang, L.; Holzschuch, N. Fast computation of single scattering in participating media with refractive boundaries using frequency analysis. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 10, 2961-2969, 2020.
[30]
Novák, J.; Georgiev, I.; Hanika, J.; Jarosz, W. Monte Carlo methods for volumetric light transport simulation. Computer Graphics Forum Vol. 37, No. 2, 551-576, 2018.
[31]
Fong, J.; Wrenninge, M.; Kulla, C.; Habel, R. Production volume rendering: SIGGRAPH 2017 course. In: Proceedings of the SIGGRAPH ’17: ACM SIGGRAPH 2017 Courses, Article No. 2, 2017.
[32]
Kajiya, J. T.; Herzen, B. P. V. Ray tracing volume densities. ACM SIGGRAPH Computer Graphics Vol. 18, No. 3, 165-174, 1984.
[33]
Lafortune, E. P.; Willems, Y. D. Rendering participating media with bidirectional path tracing. In: Rendering Techniques ’96. Pueyo, X.; Schröder, P. Eds. Springer Vienna, 91-100, 1996.
[34]
Pauly, M.; Kollig, T.; Keller, A. Metropolis light transport for participating media. In: Rendering Techniques 2000. Péroche, B.; Rushmeier, H. Eds. Springer Vienna, 11-22, 2000.
[35]
Georgiev, I.; Křvánek, J.; Hachisuka, T.; Nowrouzezahrai, D.; Jarosz, W. Joint importance sampling of low-order volumetric scattering. ACM Transactions on Graphics Vol. 32, No. 6, Article No. 164, 2013.
[36]
Jakob, W.; Marschner, S. Manifold exploration: A Markov Chain Monte Carlo technique for rendering scenes with difficult specular transport. ACM Tran-sactions on Graphics Vol. 31, No. 4, Article No. 58, 2012.
[37]
Hanika, J.; Droske, M.; Fascione, L. Manifold next event estimation. Computer Graphics Forum Vol. 34, No. 4, 87-97, 2015.
[38]
Koerner, D.; Novák, J.; Kutz, P.; Habel, R.; Jarosz, W. Subdivision next-event estimation for path-traced subsurface scattering. In Proceedings of the Eurographics Symposium on Rendering: Experimental Ideas & Implementations, 91-96, 2016.
[39]
Weber, P.; Hanika, J.; Dachsbacher, C. Multiple vertex next event estimation for lighting in dense, forward-scattering media. Computer Graphics Forum Vol. 36, No. 2, 21-30, 2017.
[40]
Křvánek, J.; d’Eon, E. A zero-variance-based sampling scheme for Monte Carlo subsurface scattering. In: Proceedings of the ACM SIGGRAPH 2014 Talks, Article No. 66, 2014.
[41]
Meng, J.; Hanika, J.; Dachsbacher, C. Improving the dwivedi sampling scheme. Computer Graphics Forum Vol. 35, No. 4, 37-44, 2016.
[42]
Deng, H.; Wang, B. B.; Wang, R.; Holzschuch, N. A practical path guiding method for participating media. Computational Visual Media Vol. 6, No. 1, 37-51, 2020.
[43]
Vorba, J.; Karlík, O.; Šik, M.; Ritschel, T.; Křvánek, J. On-line learning of parametric mixture models for light transport simulation. ACM Transactions on Graphics Vol. 33, No. 4, Article No. 101, 2014.
[44]
Müller, T.; Gross, M.; Novák, J. Practical path guiding for efficient light-transport simulation. Computer Graphics Forum Vol. 36, No. 4, 91-100, 2017.
[45]
Herholz, S.; Elek, O.; Vorba, J.; Lensch, H.; Křvánek, J. Product importance sampling for light transport path guiding. Computer Graphics Forum Vol. 35, No. 4, 67-77, 2016.
[46]
Reibold, F.; Hanika, J.; Jung, A.; Dachsbacher, C. Selective guided sampling with complete light transport paths. ACM Transactions on Graphics Vol. 37, No. 6, Article No. 223, 2019.
[47]
Guo, J. J.; Bauszat, P.; Bikker, J.; Eisemann, E. Primary sample space path guiding. In: Proceedings of the Eurographics Symposium on Rendering: Experimental Ideas & Implementations, 73-82, 2018.
[48]
Zheng, Q.; Zwicker, M. Learning to importance sample in primary sample space. Computer Graphics Forum Vol. 38, No. 2, 169-179, 2019.
[49]
Müller, T.; McWilliams, B.; Rousselle, F.; Gross, M.; Novák, J. Neural importance sampling. arXiv preprint arXiv:1808.03856, 2018.
[50]
Müller, T.; McWilliams, B.; Rousselle, F.; Gross, M.; Novák, J. Neural importance sampling. ACM Transactions on Graphics Vol. 38, No. 5, Article No. 145, 2019.
[51]
Hua, B. S.; Gruson, A.; Petitjean, V.; Zwicker, M.; Nowrouzezahrai, D.; Eisemann, E.; Hachisuka, T. A survey on gradient-domain rendering. ComputerGraphics Forum Vol. 38, No. 2, 455-472, 2019.
[52]
Gruson, A.; Hua, B. S.; Vibert, N.; Nowrouzezahrai, D.; Hachisuka, T. Gradient-domain volumetric photon density estimation. ACM Transactions on Graphics Vol. 37, No. 4, Article No. 82, 2018.
[53]
Xu, Z. L.; Sun, Q.; Wang, L.; Xu, Y. N.; Wang, B. B. Unsupervised image reconstruction for gradient-domain volumetric rendering. Computer Graphics Forum Vol. 39, No. 7, 193-203, 2020.
[54]
Durand, F.; Holzschuch, N.; Soler, C.; Chan, E.; Sillion, F. X. A frequency analysis of light transport. ACM Transactions on Graphics Vol. 24, No. 3, 1115-1126, 2005.
[55]
Belcour, L.; Soler, C.; Subr, K.; Holzschuch, N.; Durand, F. 5D covariance tracing for efficient defocus and motion blur. ACM Transactions on Graphics Vol. 32, No. 3, Article No. 31, 2013.
[56]
Belcour, L.; Bala, K.; Soler, C. A local frequency analysis of light scattering and absorption. ACM Transactions on Graphics Vol. 33, No. 5, Article No. 163, 2014.
[57]
Jarosz, W.; Donner, C.; Zwicker, M.; Jensen, H. W. Radiance caching for participating media. ACM Transactions on Graphics Vol. 27, No. 1, Article No. 7, 2008.
[58]
Marco, J.; Jarabo, A.; Jarosz, W.; Gutierrez, D. Second-order occlusion-aware volumetric radiance caching. ACM Transactions on Graphics Vol. 37, No. 2, Article No. 20, 2018.
[59]
Ge, L. S.; Wang, B. B.; Wang, L.; Holzschuch, N. A compact representation for multiple scattering in participating media using neural networks. In: Proceedings of the ACM SIGGRAPH 2018 Talks, Article No. 16, 2018.
[60]
Walter, B.; Zhao, S.; Holzschuch, N.; Bala, K. Single scattering in refractive media with triangle mesh boundaries. ACM Transactions on Graphics Vol. 28, No. 3, Article No. 92, 2009.
[61]
Holzschuch, N. Accurate computation of single scattering in participating media with refractive boundaries. Computer Graphics Forum Vol. 34, No. 6, 48-59, 2015.
[62]
Wang, B. B.; Hašan, M.; Yan, L.-Q. Path cuts: Efficient rendering of pure specular light transport. ACM Transactions on Graphics Vol. 39, No. 6, Article No. 238, 2020.
[63]
Sun, B.; Ramamoorthi, R.; Narasimhan, S. G.; Nayar, S. K. A practical analytic single scattering model for real time rendering. ACM Transactions on Graphics Vol. 24, No. 3, 1040-1049, 2005.
[64]
Kallweit, S.; Müller, T.; McWilliams, B.; Gross, M.; Novák, J. Deep scattering: Rendering atmospheric clouds with radiance-predicting neural networks. ACM Transactions on Graphics Vol. 36, No. 6, Article No. 231, 2017.
[65]
Ge, L. S.; Wang, B. B.; Wang, L.; Meng, X. X.; Holzschuch, N. Interactive simulation of scattering effects in participating media using a neural network model. IEEE Transactions on Visualization and Computer Graphics Vol. 27, No. 7, 3123-3134, 2021.
[66]
Vicini, D.; Koltun, V.; Jakob, W. A learned shape-adaptive subsurface scattering model. ACM Transactions on Graphics Vol. 38, No. 4, Article No. 127, 2019.
[67]
Guo, J.; Li, M. T.; Li, Q. W.; Qiang, Y. T.; Yan, L. Q. GradNet: Unsupervised deep screened Poisson reconstruction for gradient-domain rendering. ACM Transactions on Graphics Vol. 38, No. 6, Article No. 223, 2019.
[68]
Meng, J.; Papas, M.; Habel, R.; Dachsbacher, C.; Marschner, S.; Gross, M.; Jarosz, W. Multi-scale modeling and rendering of granular materials. ACM Transactions on Graphics Vol. 34, No. 4, Article No. 49, 2015.
[69]
Moon, J. T.; Walter, B.; Marschner, S. R. Rendering discrete random media using precomputed scattering solutions. In: Proceedings of the Eurographics Symposium on Rendering, 2007.
[70]
Müller, T.; Papas, M.; Gross, M.; Jarosz, W.; Novák, J. Efficient rendering of heterogeneous polydisperse granular media. ACM Transactions on Graphics Vol. 35, No. 6, Article No. 168, 2016.
[71]
Jarabo, A.; Aliaga, C.; Gutierrez, D. A radiative transfer framework for spatially-correlated materials. ACM Transactions on Graphics Vol. 37, No. 4, Article No. 83, 2018.
[72]
Larsen, E. W.; Vasques, R. A generalized linear Boltzmann equation for non-classical particle transport. Journal of Quantitative Spectroscopy and Radiative Transfer Vol. 112, No. 4, 619-631, 2011.
[73]
Bitterli, B.; Ravichandran, S.; Müller, T.; Wrenninge, M.; Novák, J.; Marschner, S.; Jarosz, W. A radiative transfer framework for non-exponential media. ACM Transactions on Graphics Vol. 37, No. 6, Article No. 225, 2018.
[74]
Guo, J.; Chen, Y. J.; Hu, B. Y.; Yan, L. Q.; Guo, Y. W.; Liu, Y. T. Fractional Gaussian fields for modeling and rendering of spatially-correlated media. ACM Transactions on Graphics Vol. 38, No. 4, Article No. 45, 2019.
Computational Visual Media
Pages 177-198
Cite this article:
Wu W, Wang B, Yan L-Q. A survey on rendering homogeneous participating media. Computational Visual Media, 2022, 8(2): 177-198. https://doi.org/10.1007/s41095-021-0249-1

753

Views

28

Downloads

5

Crossref

2

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 31 May 2021
Accepted: 20 July 2021
Published: 06 December 2021
© The Author(s) 2021.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduc-tion in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www. editorialmanager.com/cvmj.

Return