Sort:
Open Access Research Article Issue
Efficient participating media rendering with differentiable regularization
Computational Visual Media 2024, 10(5): 937-948
Published: 07 October 2024
Abstract PDF (5.6 MB) Collect
Downloads:3

Highly scattering media, such as milk, skin, and clouds, are common in the real world. Rendering participating media is challenging, especially for high-order scattering dominant media, because the light may undergo a large number of scattering events before leaving the surface. Monte Carlo-based methods typically require a long time to produce noise-free results. Based on the observation that low-albedo media contain less noise than high-albedo media, we propose reducing the variance of the rendered results using differentiable regularization. We first render an image with low-albedo participating media together with the gradient with respect to the albedo, and then predict the final rendered image with a low-albedo image and gradient image via a novel prediction function. To achieve high quality, we also consider the gradients of neighboring frames to provide a noise-free gradient image. Ultimately, our method can produce results with much less overall error than equal-time path tracing methods.

Open Access Review Article Issue
A survey on rendering homogeneous participating media
Computational Visual Media 2022, 8(2): 177-198
Published: 06 December 2021
Abstract PDF (2.9 MB) Collect
Downloads:31

Participating media are frequent in real-world scenes, whether they contain milk, fruit juice, oil, or muddy water in a river or the ocean. Incoming light interacts with these participating media in complex ways: refraction at boundaries and scattering and absorption inside volumes. The radiative transfer equation is the key to solving this problem. There are several categories of rendering methods which are all based on this equation, but using different solutions. In this paper, we introduce these groups, which include volume density estimation based approaches, virtual point/ray/beam lights, point based approaches, Monte Carlo based approaches, acceleration techniques, accurate single scattering methods, neural network based methods, and spatially-correlated participating media related methods. As well as discussing these methods, we consider the challenges and open problems in this research area.

Total 2