Highly scattering media, such as milk, skin, and clouds, are common in the real world. Rendering participating media is challenging, especially for high-order scattering dominant media, because the light may undergo a large number of scattering events before leaving the surface. Monte Carlo-based methods typically require a long time to produce noise-free results. Based on the observation that low-albedo media contain less noise than high-albedo media, we propose reducing the variance of the rendered results using differentiable regularization. We first render an image with low-albedo participating media together with the gradient with respect to the albedo, and then predict the final rendered image with a low-albedo image and gradient image via a novel prediction function. To achieve high quality, we also consider the gradients of neighboring frames to provide a noise-free gradient image. Ultimately, our method can produce results with much less overall error than equal-time path tracing methods.


The emergence of 3D Gaussian splatting (3DGS) has greatly accelerated rendering in novel view synthesis. Unlike neural implicit representations like neural radiance fields (NeRFs) that represent a 3D scene with position and viewpoint-conditioned neural networks, 3D Gaussian splatting utilizes a set of Gaussian ellipsoids to model the scene so that efficient rendering can be accomplished by rasterizing Gaussian ellipsoids into images. Apart from fast rendering, the explicit representation of 3D Gaussian splatting also facilitates downstream tasks like dynamic reconstruction, geometry editing, and physical simulation. Considering the rapid changes and growing number of works in this field, we present a literature review of recent 3D Gaussian splatting methods, which can be roughly classified by functionality into 3D reconstruction, 3D editing, and other downstream applications. Traditional point-based rendering methods and the rendering formulation of 3D Gaussian splatting are also covered to aid understanding of this technique. This survey aims to help beginners to quickly get started in this field and to provide experienced researchers with a comprehensive overview, aiming to stimulate future development of the 3D Gaussian splatting representation.

The interaction between light and materials is key to physically-based realistic rendering. However, it is also complex to analyze, especially when the materials contain a large number of details and thus exhibit "glinty" visual effects. Recent methods of producing glinty appearance are expected to be important in next-generation computer graphics. We provide here a comprehensive survey on recent glinty appearance rendering. We start with a definition of glinty appearance based on microfacet theory, and then summarize research works in terms of representation and practical rendering. We have implemented typical methods using our unified platform and compare them in terms of visual effects, rendering speed, and memory consumption. Finally, we briefly discuss limitations and future research directions. We hope our analysis, implementations, and comparisons will provide insight for readers hoping to choose suitable methods for applications, or carry out research.

We consider the scattering of light in participating media composed of sparsely and randomly distributed discrete particles. The particle size is expected to range from the scale of the wavelength to several orders of magnitude greater, resulting in an appearance with distinct graininess as opposed to the smooth appearance of continuous media. One fundamental issue in the physically-based synthesis of such appearance is to determine the necessary optical properties in every local region. Since these properties vary spatially, we resort to geometrical optics approximation (GOA), a highly efficient alternative to rigorous Lorenz-Mie theory, to quantitatively represent the scattering of a single particle. This enables us to quickly compute bulk optical properties for any particle size distribution. We then use a practical Monte Carlo rendering solution to solve energy transfer in the discrete participating media. Our proposed framework is the first to simulate a wide range of discrete participating media with different levels of graininess, converging to the continuous media case as the particle concentration increases.

Participating media are frequent in real-world scenes, whether they contain milk, fruit juice, oil, or muddy water in a river or the ocean. Incoming light interacts with these participating media in complex ways: refraction at boundaries and scattering and absorption inside volumes. The radiative transfer equation is the key to solving this problem. There are several categories of rendering methods which are all based on this equation, but using different solutions. In this paper, we introduce these groups, which include volume density estimation based approaches, virtual point/ray/beam lights, point based approaches, Monte Carlo based approaches, acceleration techniques, accurate single scattering methods, neural network based methods, and spatially-correlated participating media related methods. As well as discussing these methods, we consider the challenges and open problems in this research area.