Sort:
Open Access Review Article Issue
Recent advances in glinty appearance rendering
Computational Visual Media 2022, 8 (4): 535-552
Published: 16 May 2022
Abstract PDF (9.3 MB) Collect
Downloads:53

The interaction between light and materials is key to physically-based realistic rendering. However, it is also complex to analyze, especially when the materials contain a large number of details and thus exhibit "glinty" visual effects. Recent methods of producing glinty appearance are expected to be important in next-generation computer graphics. We provide here a comprehensive survey on recent glinty appearance rendering. We start with a definition of glinty appearance based on microfacet theory, and then summarize research works in terms of representation and practical rendering. We have implemented typical methods using our unified platform and compare them in terms of visual effects, rendering speed, and memory consumption. Finally, we briefly discuss limitations and future research directions. We hope our analysis, implementations, and comparisons will provide insight for readers hoping to choose suitable methods for applications, or carry out research.

Open Access Research Article Issue
Rendering discrete participating media using geometrical optics approximation
Computational Visual Media 2022, 8 (3): 425-444
Published: 01 April 2022
Abstract PDF (4.9 MB) Collect
Downloads:29

We consider the scattering of light in participating media composed of sparsely and randomly distributed discrete particles. The particle size is expected to range from the scale of the wavelength to several orders of magnitude greater, resulting in an appearance with distinct graininess as opposed to the smooth appearance of continuous media. One fundamental issue in the physically-based synthesis of such appearance is to determine the necessary optical properties in every local region. Since these properties vary spatially, we resort to geometrical optics approximation (GOA), a highly efficient alternative to rigorous Lorenz-Mie theory, to quantitatively represent the scattering of a single particle. This enables us to quickly compute bulk optical properties for any particle size distribution. We then use a practical Monte Carlo rendering solution to solve energy transfer in the discrete participating media. Our proposed framework is the first to simulate a wide range of discrete participating media with different levels of graininess, converging to the continuous media case as the particle concentration increases.

Open Access Review Article Issue
A survey on rendering homogeneous participating media
Computational Visual Media 2022, 8 (2): 177-198
Published: 06 December 2021
Abstract PDF (2.9 MB) Collect
Downloads:28

Participating media are frequent in real-world scenes, whether they contain milk, fruit juice, oil, or muddy water in a river or the ocean. Incoming light interacts with these participating media in complex ways: refraction at boundaries and scattering and absorption inside volumes. The radiative transfer equation is the key to solving this problem. There are several categories of rendering methods which are all based on this equation, but using different solutions. In this paper, we introduce these groups, which include volume density estimation based approaches, virtual point/ray/beam lights, point based approaches, Monte Carlo based approaches, acceleration techniques, accurate single scattering methods, neural network based methods, and spatially-correlated participating media related methods. As well as discussing these methods, we consider the challenges and open problems in this research area.

Total 3