Highly scattering media, such as milk, skin, and clouds, are common in the real world. Rendering participating media is challenging, especially for high-order scattering dominant media, because the light may undergo a large number of scattering events before leaving the surface. Monte Carlo-based methods typically require a long time to produce noise-free results. Based on the observation that low-albedo media contain less noise than high-albedo media, we propose reducing the variance of the rendered results using differentiable regularization. We first render an image with low-albedo participating media together with the gradient with respect to the albedo, and then predict the final rendered image with a low-albedo image and gradient image via a novel prediction function. To achieve high quality, we also consider the gradients of neighboring frames to provide a noise-free gradient image. Ultimately, our method can produce results with much less overall error than equal-time path tracing methods.
Jarosz, W.; Nowrouzezahrai, D.; Thomas, R.; Sloan, P. P.; Zwicker, M. Progressive photon beams. ACM Transactions on Graphics Vol. 30, No. 6, 1–12, 2011.
Jarosz, W.; Zwicker, M.; Jensen, H. W. The beam radiance estimate for volumetric photon mapping. Computer Graphics Forum Vol. 27, No. 2, 557–566, 2008.
Křivánek, J.; Georgiev, I.; Hachisuka, T.; Vévoda, P.; Šik, M.; Nowrouzezahrai, D.; Jarosz, W. Unifying points, beams, and paths in volumetric light transport simulation. ACM Transactions on Graphics Vol. 33, No. 4, Article No. 103, 2014.
Bitterli, B.; Jarosz, W. Beyond points and beams: Higher-dimensional photon samples for volumetric light transport. ACM Transactions on Graphics Vol. 36 No. 4, Article No. 112, 2017.
Deng, X.; Jiao, S.; Bitterli, B.; Jarosz, W. Photon surfaces for robust, unbiased volumetric density estimation. ACM Transactions on Graphics Vol. 38 No. 4, Article No. 46, 2019.
Kajiya, J. T.; Herzen, B. P. V. Ray tracing volume densities. ACM SIGGRAPH Computer Graphics Vol. 18, No. 3, 165–174, 1984.
Deng, H.; Wang, B.; Wang, R.; Holzschuch, N. A practical path guiding method for participating media. Computational Visual Media Vol. 6, No. 1, 37–51, 2020.
Herholz, S.; Zhao, Y.; Elek, O.; Nowrouzezahrai, D.; Lensch, H. P. A.; Křivánek, J. Volume path guiding based on zero-variance random walk theory. ACM Transactions on Graphics Vol. 38, No. 3, Article No. 25, 2019.
Meng, J.; Hanika, J.; Dachsbacher, C. Improving the dwivedi sampling scheme. Computer Graphics Forum Vol. 35, No. 4, 37–44, 2016.
Fan, J.; Wang, B.; Wu, W.; Hašan, M.; Yang, J.; Yan, L. Q. Efficient specular glints rendering with differentiable regularization. IEEE Transactions on Visualization and Computer Graphics Vol. 29, No. 6, 2940–2949, 2023.
Wu, W.; Wang, B.; Yan, L. Q. A survey on rendering homogeneous participating media. Computational Visual Media Vol. 8, No. 2, 177–198, 2022.
Weber, P.; Hanika, J.; Dachsbacher, C. Multiple vertex next event estimation for lighting in dense, forward-scattering media. Computer Graphics Forum Vol. 36, No. 2, 21–30, 2017.
Kaplanyan, A. S.; Dachsbacher, C. Path space regularization for holistic and robust light transport. Computer Graphics Forum Vol. 32, No. 2pt1, 63–72, 2013.
Jendersie, J.; Grosch, T. Microfacet model regularization for robust light transport. Computer Graphics Forum Vol. 38, No. 4, 39–47, 2019.
Jarosz, W.; Donner, C.; Zwicker, M.; Jensen, H. W. Radiance caching for participating media, ACM Transactions on Graphics Vol. 27, No. 1, Article No. 7, 2008.
Jarosz, W.; Zwicker, M.; Jensen, H. W. Irradiance gradients in the presence of participating media and occlusions. Computer Graphics Forum Vol. 27, No. 4, 1087–1096, 2008.
Marco, J.; Jarabo, A.; Jarosz, W.; Gutierrez, D. Second-order occlusion-aware volumetric radiance caching. ACM Transactions on Graphics Vol. 37, No. 2, Article No. 20, 2018.
Li, T. M.; Aittala, M.; Durand, F.; Lehtinen, J. Differentiable Monte Carlo ray tracing through edge sampling. ACM Transactions on Graphics Vol. 37, No. 6, Article No. 222, 2018.
Loubet, G.; Holzschuch, N.; Jakob, W. Reparameterizing discontinuous integrands for differentiable rendering. ACM Transactions on Graphics Vol. 38, No. 6, Article No. 228, 2019.
Zhang, C.; Wu, L.; Zheng, C.; Gkioulekas, I.; Ramamoorthi, R.; Zhao, S. A differential theory of radiative transfer. ACM Transactions on Graphics Vol. 38, No. 6, Article No. 227, 2019.
Zhang, C.; Miller, B.; Yan, K.; Gkioulekas, I.; Zhao, S. Path-space differentiable rendering. ACM Transactions on Graphics Vol. 39, No. 4, Article No. 143, 2020.
Zhang, C.; Yu, Z.; Zhao, S. Path-space differentiable rendering of participating media. ACM Transactions on Graphics Vol. 40, No. 4, Article No. 76, 2021.
Nimier-David, M.; Vicini, D.; Zeltner, T.; Jakob, W. Mitsuba 2: A retargetable forward and inverse renderer. ACM Transactions on Graphics Vol. 38, No. 6, Article No. 227, 2019.
Nimier-David, M.; Speierer, S.; Ruiz, B.; Jakob, W. Radiative backpropagation: An adjoint method for lightning-fast differentiable rendering. ACM Transactions on Graphics Vol. 39, No. 4, Article No. 146, 2020.
Zhang, C.; Dong, Z.; Doggett, M.; Zhao, S. Antithetic sampling for Monte Carlo differentiable rendering. ACM Transactions on Graphics Vol. 40, No. 4, Article No. 77, 2021.
Hašan, M.; Ramamoorthi, R. Interactive albedo editing in path-traced volumetric materials. ACM Transactions on Graphics Vol. 32, No. 2, Article No. 11, 2013.
Zhao, S.; Ramamoorthi, R.; Bala, K. High-order similarity relations in radiative transfer. ACM Transactions on Graphics Vol. 33, No. 4, Article No. 104, 2014.
Chandrasekhar, S. Radiative Transfer. New York, USA: Dover Publications, 1960.