Sort:
Open Access Research Article Issue
Use of Nano-Sensors of the Interferences between Pb((II) with Each of Mg(II), Zn(II), Mn(II), Ca(II), Co(II) and PO4-3 in Blood Medium: An Electrochemical Study
Nano Biomedicine and Engineering 2017, 9 (3): 199-207
Published: 12 September 2017
Abstract PDF (643.6 KB) Collect
Downloads:9

Lead is considered a key element in causing autism disease in children due to the pollution of this dangerous element to human. The aim of this research is to obtain a chemical compound with the effect of inhibiting the oxidation of lead ions on the brain that causes the autism disease. Cyclic voltammetric technique was used to study the effect of interferences between lead ions with selected elements such as Mn(II), Mg(II), Zn(II), Ca(II), PO4-3 and Co(II) in blood medium. Multi wall carbon nano tube (MWCNT) which was modified with glassy carbon electrode (GCE) was used as a working electrode sensor in cyclic voltammetric method. The results showed that the oxidation and reduction current peaks of Pb(II) ions in the blood medium appeared at -0.2 and -0.8 V respectively. It was found that Co(II) ions had a significant effect on the Pb(II) ions in blood medium as anti-oxidative reagent by reducing the anodic current peak of Pb(II) with five folds and enhancing the cathodic current peak. But other ions such as Mn(II), Mg(II), Zn(II), Ca(II) and PO4-3 reduced both redox current peaks of Pb(II) in blood medium. It means that Co(II) ions acted as a good anti-oxidative reagent in blood medium which reduced the effect of lead ions on brain cells by the blood stream. Hence, cobalt compounds could be used as drugs for treatment of the autism disease in children.

Open Access Research Article Issue
Effect of Micro- and Nanoparticles of Ampicillin Trihydrate on Blood Medium: A Voltammetric Study
Nano Biomedicine and Engineering 2017, 9 (3): 185-190
Published: 11 August 2017
Abstract PDF (1.8 MB) Collect
Downloads:4

For the first time, one of the antibiotic nanoparticles such as a classical form of ampicillin trihydrate compound was studied. The electrochemical behavior of ampicillin nanoparticles was investigated in blood medium using cyclic voltammetric technique by glassy carbon electrode. The results showed that the oxidation-reduction current peaks of ampicillin nanoparticles in blood medium were different from that of microparticles. The nanoparticles acted as anti-oxidative antibiotic by making the oxidation current peak at 1 V disappear, while the oxidation peak of microparticles still appeared in blood medium; hence, ampicillin at microform acted as oxidative reagent in blood medium. A good reliability and stability of glassy carbon electrode in blood medium was found with low values of RSD for oxidation-reduction current peaks at ±0.52% and ±0.038% respectively. Scanning electron microscopy for the characterization of ampicillin trihydrate nanoparticles was studied.

Open Access Research Article Issue
New Voltammetric Study of MgCl2 as Alternative Contrast Media in MRI Molecular Imaging
Nano Biomedicine and Engineering 2017, 9 (2): 152-161
Published: 30 June 2017
Abstract PDF (2 MB) Collect
Downloads:8

Gadolinium compounds have been used as a common contrast media in MRI technique; however, they have oxidation-reduction current peaks in blood medium. To propose a solution for this problem, the alternative of contrast media in magnetic resonance imaging (MRI) was studied by electrochemical method using cyclic voltammetric technique. Magnesium compound was chosen such as MgCl2 which has a good electrochemical properties especially in blood medium. It was found that Mg (Ⅱ) ions in blood medium acted as an antioxidative reagent. The results of this study focused on the effect of magnesium chloride ions in normal saline, KCl solution and blood medium in presence with ascorbic acid (AA) and folic acid (FA) and understanding the redox current peaks of Mg (Ⅱ) ions in these conditions. We obtained good results by using MgCl2 solution as an alternative contrast medium in MRI technique instead of using of gadolinium compounds.

Total 3